These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38933002)

  • 1. Detect and attribute the extreme maize yield losses based on spatio-temporal deep learning.
    Zhong R; Zhu Y; Wang X; Li H; Wang B; You F; Rodríguez LF; Huang J; Ting KC; Ying Y; Lin T
    Fundam Res; 2023 Nov; 3(6):951-959. PubMed ID: 38933002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level.
    Jiang H; Hu H; Zhong R; Xu J; Xu J; Huang J; Wang S; Ying Y; Lin T
    Glob Chang Biol; 2020 Mar; 26(3):1754-1766. PubMed ID: 31789455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of climate extreme events and their causality on maize yield in South Africa.
    Simanjuntak C; Gaiser T; Ahrends HE; Ceglar A; Singh M; Ewert F; Srivastava AK
    Sci Rep; 2023 Aug; 13(1):12462. PubMed ID: 37528122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt.
    Xu T; Guan K; Peng B; Wei S; Zhao L
    Front Artif Intell; 2021; 4():647999. PubMed ID: 34124647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of extreme weather conditions on European crop production in 2018.
    Beillouin D; Schauberger B; Bastos A; Ciais P; Makowski D
    Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190510. PubMed ID: 32892735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models.
    Leng G; Hall JW
    Environ Res Lett; 2020 Apr; 15(4):. PubMed ID: 32395176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rebuilding high-quality near-surface ozone data based on the combination of WRF-Chem model with a machine learning method to better estimate its impact on crop yields in the Beijing-Tianjin-Hebei region from 2014 to 2019.
    Han T; Hu X; Zhang J; Xue W; Che Y; Deng X; Zhou L
    Environ Pollut; 2023 Nov; 336():122334. PubMed ID: 37567405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields.
    Feng S; Hao Z; Zhang X; Hao F
    Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.
    Ferrero R; Lima M; Gonzalez-Andujar JL
    PLoS One; 2014; 9(5):e98220. PubMed ID: 24878747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change.
    Ma Z; Wang W; Chen X; Gehman K; Yang H; Yang Y
    Pest Manag Sci; 2024 Jul; ():. PubMed ID: 38989640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains.
    Song L; Guanter L; Guan K; You L; Huete A; Ju W; Zhang Y
    Glob Chang Biol; 2018 Sep; 24(9):4023-4037. PubMed ID: 29749021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale.
    Feng S; Hao Z
    Sci Total Environ; 2020 Feb; 704():135250. PubMed ID: 31818572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO
    Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR
    Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent changes in county-level maize production in the United States: Spatial-temporal patterns, climatic drivers and the implications for crop modelling.
    Leng G; Peng J; Huang S
    Sci Total Environ; 2019 Oct; 686():819-827. PubMed ID: 31195289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent changes in county-level corn yield variability in the United States from observations and crop models.
    Leng G
    Sci Total Environ; 2017 Dec; 607-608():683-690. PubMed ID: 28710999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random Forests for Global and Regional Crop Yield Predictions.
    Jeong JH; Resop JP; Mueller ND; Fleisher DH; Yun K; Butler EE; Timlin DJ; Shim KM; Gerber JS; Reddy VR; Kim SH
    PLoS One; 2016; 11(6):e0156571. PubMed ID: 27257967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop rotational diversity can mitigate climate-induced grain yield losses.
    Costa A; Bommarco R; Smith ME; Bowles T; Gaudin ACM; Watson CA; Alarcón R; Berti A; Blecharczyk A; Calderon FJ; Culman S; Deen W; Drury CF; Garcia Y Garcia A; García-Díaz A; Hernández Plaza E; Jonczyk K; Jäck O; Navarrete Martínez L; Montemurro F; Morari F; Onofri A; Osborne SL; Tenorio Pasamón JL; Sandström B; Santín-Montanyá I; Sawinska Z; Schmer MR; Stalenga J; Strock J; Tei F; Topp CFE; Ventrella D; Walker RL; Vico G
    Glob Chang Biol; 2024 May; 30(5):e17298. PubMed ID: 38712640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.