These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38933146)
21. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Khademi Z; Ebrahimi F; Kordy HM Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083 [TBL] [Abstract][Full Text] [Related]
22. SKDCPM algorithm can improve the single-trial decoding performance of very similar error-related potentials Meng J; Wang H; Sun J; Zhao Y; Xu M; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083659 [TBL] [Abstract][Full Text] [Related]
23. The Effect of Static and Dynamic Visual Stimulations on Error Detection Based on Error-Evoked Brain Responses. Xu R; Wang Y; Shi X; Wang N; Ming D Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785187 [TBL] [Abstract][Full Text] [Related]
24. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798 [TBL] [Abstract][Full Text] [Related]
25. A transformer-based deep neural network model for SSVEP classification. Chen J; Zhang Y; Pan Y; Xu P; Guan C Neural Netw; 2023 Jul; 164():521-534. PubMed ID: 37209444 [TBL] [Abstract][Full Text] [Related]
26. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation. Usama N; Kunz Leerskov K; Niazi IK; Dremstrup K; Jochumsen M Med Biol Eng Comput; 2020 Nov; 58(11):2699-2710. PubMed ID: 32862336 [TBL] [Abstract][Full Text] [Related]
27. Local and global convolutional transformer-based motor imagery EEG classification. Zhang J; Li K; Yang B; Han X Front Neurosci; 2023; 17():1219988. PubMed ID: 37662099 [TBL] [Abstract][Full Text] [Related]
28. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056 [TBL] [Abstract][Full Text] [Related]
30. Deep-learning online EEG decoding brain-computer interface using error-related potentials recorded with a consumer-grade headset. Ancau DM; Ancau M; Ancau M Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35038681 [No Abstract] [Full Text] [Related]
31. Deep learning for electroencephalogram (EEG) classification tasks: a review. Craik A; He Y; Contreras-Vidal JL J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014 [TBL] [Abstract][Full Text] [Related]
32. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task. Lashgari E; Ott J; Connelly A; Baldi P; Maoz U J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734 [No Abstract] [Full Text] [Related]
33. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644 [TBL] [Abstract][Full Text] [Related]
34. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders. Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535 [No Abstract] [Full Text] [Related]
35. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Mattioli F; Porcaro C; Baldassarre G J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443 [No Abstract] [Full Text] [Related]
36. Towards error categorisation in BCI: single-trial EEG classification between different errors. Wirth C; Dockree PM; Harty S; Lacey E; Arvaneh M J Neural Eng; 2019 Dec; 17(1):016008. PubMed ID: 31683267 [TBL] [Abstract][Full Text] [Related]
37. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment. Vukelić M; Bui M; Vorreuther A; Lingelbach K Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482 [TBL] [Abstract][Full Text] [Related]
38. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850 [TBL] [Abstract][Full Text] [Related]
40. Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification. Lee PL; Chen SH; Chang TC; Lee WK; Hsu HT; Chang HH Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]