These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38933146)
41. Subject adaptation convolutional neural network for EEG-based motor imagery classification. Liu S; Zhang J; Wang A; Wu H; Zhao Q; Long J J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36270467 [No Abstract] [Full Text] [Related]
42. A Few-Shot Transfer Learning Approach for Motion Intention Decoding from Electroencephalographic Signals. Mammone N; Ieracitano C; Spataro R; Guger C; Cho W; Morabito FC Int J Neural Syst; 2024 Feb; 34(2):2350068. PubMed ID: 38073546 [TBL] [Abstract][Full Text] [Related]
43. Handling Few Training Data: Classifier Transfer Between Different Types of Error-Related Potentials. Kim SK; Kirchner EA IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):320-32. PubMed ID: 26701866 [TBL] [Abstract][Full Text] [Related]
44. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. Liu X; Lv L; Shen Y; Xiong P; Yang J; Liu J J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33395676 [No Abstract] [Full Text] [Related]
45. Improving EEG-based error detection using relative peak features. Ashley AL; Arvaneh M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():272-275. PubMed ID: 33017981 [TBL] [Abstract][Full Text] [Related]
46. Errare machinale est: the use of error-related potentials in brain-machine interfaces. Chavarriaga R; Sobolewski A; Millán Jdel R Front Neurosci; 2014; 8():208. PubMed ID: 25100937 [TBL] [Abstract][Full Text] [Related]
47. Single-Trial Classification of Error-Related Potentials in People with Motor Disabilities: A Study in Cerebral Palsy, Stroke, and Amputees. Usama N; Niazi IK; Dremstrup K; Jochumsen M Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214576 [TBL] [Abstract][Full Text] [Related]
48. Explainable cross-task adaptive transfer learning for motor imagery EEG classification. Miao M; Yang Z; Zeng H; Zhang W; Xu B; Hu W J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37963394 [No Abstract] [Full Text] [Related]
49. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning. Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579 [TBL] [Abstract][Full Text] [Related]
50. Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning. Feng J; Li Y; Jiang C; Liu Y; Li M; Hu Q Front Hum Neurosci; 2022; 16():1068165. PubMed ID: 36618992 [TBL] [Abstract][Full Text] [Related]
51. Motor imagery EEG decoding using manifold embedded transfer learning. Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904 [TBL] [Abstract][Full Text] [Related]
52. Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI. Li P; Su J; Belkacem AN; Cheng L; Chen C Front Neurosci; 2022; 16():971039. PubMed ID: 35958998 [TBL] [Abstract][Full Text] [Related]
53. Instance Transfer Subject-Dependent Strategy for Motor Imagery Signal Classification Using Deep Convolutional Neural Networks. Zhang K; Xu G; Chen L; Tian P; Han C; Zhang S; Duan N Comput Math Methods Med; 2020; 2020():1683013. PubMed ID: 32908576 [TBL] [Abstract][Full Text] [Related]
54. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
55. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface. Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230 [TBL] [Abstract][Full Text] [Related]
56. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network. Zhang K; Robinson N; Lee SW; Guan C Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114 [TBL] [Abstract][Full Text] [Related]
57. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network. Deng Y; Sun Q; Wang C; Wang Y; Zhou SK J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806 [No Abstract] [Full Text] [Related]
58. Learning EEG Representations With Weighted Convolutional Siamese Network: A Large Multi-Session Post-Stroke Rehabilitation Study. Zhang S; Ang KK; Zheng D; Hui Q; Chen X; Li Y; Tang N; Chew E; Lim RY; Guan C IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2824-2833. PubMed ID: 36155481 [TBL] [Abstract][Full Text] [Related]
59. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
60. Error potential detection during continuous movement of an artificial arm controlled by brain-computer interface. Kreilinger A; Neuper C; Müller-Putz GR Med Biol Eng Comput; 2012 Mar; 50(3):223-30. PubMed ID: 22210463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]