BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38933185)

  • 1. A commentary of "Discovery of a new charge storage and collective reaction mechanism in lithium sulfur batteries": Top 10 Scientific Advances of 2023, China.
    Xia D
    Fundam Res; 2024 May; 4(3):710-712. PubMed ID: 38933185
    [No Abstract]   [Full Text] [Related]  

  • 2. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.
    Kim BS; Lee MS; Park KY; Kang K
    Chem Asian J; 2016 Apr; 11(8):1288-92. PubMed ID: 26928985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing interfacial collective reaction behaviour of Li-S batteries.
    Zhou S; Shi J; Liu S; Li G; Pei F; Chen Y; Deng J; Zheng Q; Li J; Zhao C; Hwang I; Sun CJ; Liu Y; Deng Y; Huang L; Qiao Y; Xu GL; Chen JF; Amine K; Sun SG; Liao HG
    Nature; 2023 Sep; 621(7977):75-81. PubMed ID: 37673990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically Stable Rechargeable Lithium-Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film.
    Chiu LL; Chung SH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries.
    Wang Y; Yang X; Li P; Cui F; Wang R; Li X
    Macromol Rapid Commun; 2023 Jun; 44(11):e2200760. PubMed ID: 36385727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries.
    Chen C; Zhang M; Chen Q; Duan H; Liu S
    Chem Rec; 2023 Jun; 23(6):e202200278. PubMed ID: 36807712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium-Sulfur Batteries.
    Tian J; Ji G; Han X; Xing F; Gao Q
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization.
    Gicha BB; Tufa LT; Nwaji N; Hu X; Lee J
    Nanomicro Lett; 2024 Apr; 16(1):172. PubMed ID: 38619762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries.
    Lee CW; Pang Q; Ha S; Cheng L; Han SD; Zavadil KR; Gallagher KG; Nazar LF; Balasubramanian M
    ACS Cent Sci; 2017 Jun; 3(6):605-613. PubMed ID: 28691072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries.
    Julien CM
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Status and Future Prospects of Metal-Sulfur Batteries.
    Chung SH; Manthiram A
    Adv Mater; 2019 Jul; 31(27):e1901125. PubMed ID: 31081272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries.
    Zhang J; Gu P; Xu J; Xue H; Pang H
    Nanoscale; 2016 Nov; 8(44):18578-18595. PubMed ID: 27805219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics.
    Lang SY; Xiao RJ; Gu L; Guo YG; Wen R; Wan LJ
    J Am Chem Soc; 2018 Jul; 140(26):8147-8155. PubMed ID: 29883104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.
    Medenbach L; Adelhelm P
    Top Curr Chem (Cham); 2017 Sep; 375(5):81. PubMed ID: 28963656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review.
    Wang Y; Zhang Y; Cheng H; Ni Z; Wang Y; Xia G; Li X; Zeng X
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonconventional Electrochemical Reactions in Rechargeable Lithium-Sulfur Batteries.
    Tan SJ; Feng XX; Wang YH; Guo YG; Xin S
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38639560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.