These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38933538)

  • 1. Corrigendum: Applied insight: studying reducing the carbon footprint of the drying process and its environmental impact and financial return.
    Ibrahim A; Amer A; Elsebaee I; Sabahe A; Amer MA
    Front Bioeng Biotechnol; 2024; 12():1431416. PubMed ID: 38933538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applied insight: studying reducing the carbon footprint of the drying process and its environmental impact and financial return.
    Ibrahim A; Amer A; Elsebaee I; Sabahe A; Amer MA
    Front Bioeng Biotechnol; 2024; 12():1355133. PubMed ID: 38558793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer.
    Ahmad A; Prakash O; Kumar A
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72026-72040. PubMed ID: 34757557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: A case study of Tehran, Iran.
    Rouhi K; Shafiepour Motlagh M; Dalir F
    J Air Waste Manag Assoc; 2023 Dec; 73(12):890-901. PubMed ID: 37843987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of a novel cylindrical solar dryer on farmer's income and its impact on environment.
    Sharma K; Kothari S; Panwar NL; Patel MR
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78887-78900. PubMed ID: 35697990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of a hybrid smart solar dryer.
    Ibrahim A; Elsebaee I; Amer A; Aboelasaad G; El-Bediwy A; El-Kholy M
    J Food Sci; 2023 Sep; 88(9):3859-3878. PubMed ID: 37530625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an optimal hybrid solar method for lime-drying behavior.
    Suherman S; Hadiyanto H; Susanto EE; Rahmatullah SA; Pratama AR
    Heliyon; 2020 Oct; 6(10):e05356. PubMed ID: 33163656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and exergo-environmental (3E) analysis of wheat seeds drying using indirect solar dryer.
    Singh D; Mishra S; Shankar R
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):120010-120029. PubMed ID: 37934406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of energy, exergy, environmental, and economic study of an evacuated tube solar dryer for drying Krishna Tulsi.
    Rao TSSB; Sivalingam M
    Environ Sci Pollut Res Int; 2023 May; 30(25):67351-67367. PubMed ID: 37103704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of FE modeling for hybrid greenhouse dryer for potato chips drying.
    Kumar L; Prakash O
    J Food Sci; 2023 May; 88(5):1800-1815. PubMed ID: 36939718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger.
    Ndukwu MC; Simo-Tagne M; Abam FI; Onwuka OS; Prince S; Bennamoun L
    Heliyon; 2020 Feb; 6(2):e03401. PubMed ID: 32083216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greenhouse Gas Emissions from Respiratory Treatments: Results from the SABA CARBON International Study.
    Alzaabi A; Bell JP; Montero-Arias F; Price DB; Jackson DJ; Wang HC; Budgen N; Farouk H; Maslova E
    Adv Ther; 2023 Nov; 40(11):4836-4856. PubMed ID: 37684493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of organizational carbon footprints in a denim-washing company: a systematic approach to indirect non-energy emissions.
    Aykaç Özen H; Vayiç B; Çoruh S
    Environ Sci Pollut Res Int; 2024 May; 31(24):35897-35907. PubMed ID: 38740688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products.
    Rulazi EL; Marwa J; Kichonge B; Kivevele T
    ACS Omega; 2023 Nov; 8(45):43304-43317. PubMed ID: 38024705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of a hybrid solar dryer with flexible open sorption thermal energy storage unit on demand for burdock root drying.
    Zhu R; Yu Q; Li M; Xia Y; Li A; Zhan D; Li Y; Wang Y
    Environ Sci Pollut Res Int; 2023 May; 30(22):61977-61999. PubMed ID: 36933134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. American Orthopaedic Foot and Ankle Society Annual Meeting All-in-person Attendance Results in Immense Carbon Expenditure.
    Parker EB; Bluman A; Pruneski J; Soens W; Bernstein A; Smith JT; Bluman EM
    Clin Orthop Relat Res; 2023 Dec; 481(12):2469-2480. PubMed ID: 37493467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.
    Thiel CL; Woods NC; Bilec MM
    Am J Public Health; 2018 Apr; 108(S2):S158-S164. PubMed ID: 29698098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainability assessment of hybrid active greenhouse solar dryer integrated with evacuated solar collector.
    Singh P; Gaur MK
    Curr Res Food Sci; 2021; 4():684-691. PubMed ID: 34661167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The water consumption reductions from home solar installation in the United States.
    Vengosh A; Weinthal E
    Sci Total Environ; 2023 Jan; 854():158738. PubMed ID: 36108854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation.
    Tripathy PP
    J Food Sci Technol; 2015 Mar; 52(3):1383-93. PubMed ID: 25745206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.