These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38933544)

  • 1. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion.
    Ma RM; Luan HY; Zhao ZW; Mao WZ; Wang SL; Ouyang YH; Shao ZK
    Fundam Res; 2023 Jul; 3(4):537-543. PubMed ID: 38933544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magic-angle lasers in nanostructured moiré superlattice.
    Mao XR; Shao ZK; Luan HY; Wang SL; Ma RM
    Nat Nanotechnol; 2021 Oct; 16(10):1099-1105. PubMed ID: 34400821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light-Matter Interaction at the Nanoscale.
    Indukuri SRKC; Bar-David J; Mazurski N; Levy U
    ACS Nano; 2019 Oct; 13(10):11770-11780. PubMed ID: 31589409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in nanocavities and their applications.
    Hwang MS; Choi JH; Jeong KY; Kim KH; Kim HR; So JP; Lee HC; Kim J; Kwon SH; Park HG
    Chem Commun (Camb); 2021 May; 57(40):4875-4885. PubMed ID: 33881425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singular dielectric nanolaser with atomic-scale field localization.
    Ouyang YH; Luan HY; Zhao ZW; Mao WZ; Ma RM
    Nature; 2024 Jul; ():. PubMed ID: 39020170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable moiré nanolaser arrays with phase synchronization.
    Luan HY; Ouyang YH; Zhao ZW; Mao WZ; Ma RM
    Nature; 2023 Dec; 624(7991):282-288. PubMed ID: 38092911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-demand transfer of trapped photons on a chip.
    Konoike R; Nakagawa H; Nakadai M; Asano T; Tanaka Y; Noda S
    Sci Adv; 2016 May; 2(5):e1501690. PubMed ID: 27386530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications.
    Sun X; Suriyage M; Khan AR; Gao M; Zhao J; Liu B; Hasan MM; Rahman S; Chen RS; Lam PK; Lu Y
    Chem Rev; 2024 Feb; 124(4):1992-2079. PubMed ID: 38335114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.
    Sumikura H; Kuramochi E; Taniyama H; Notomi M
    Sci Rep; 2014 May; 4():5040. PubMed ID: 24853336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores.
    Chan WP; Chen JH; Chou WL; Chen WY; Liu HY; Hu HC; Jeng CC; Li JR; Chen C; Chen SY
    ACS Nano; 2021 Aug; 15(8):13085-13093. PubMed ID: 34313105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Fabry-Pérot nanocavity.
    Sorger VJ; Oulton RF; Yao J; Bartal G; Zhang X
    Nano Lett; 2009 Oct; 9(10):3489-93. PubMed ID: 19673532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities.
    Kuramochi E; Matsuda N; Nozaki K; Park AHK; Takesue H; Notomi M
    Opt Express; 2018 Apr; 26(8):9552-9564. PubMed ID: 29715904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities.
    Choi H; Heuck M; Englund D
    Phys Rev Lett; 2017 Jun; 118(22):223605. PubMed ID: 28621978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.