These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38933560)

  • 41. All-optical optomechanics: an optical spring mirror.
    Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P
    Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optomechanics with a hybrid carbon nanotube resonator.
    Tavernarakis A; Stavrinadis A; Nowak A; Tsioutsios I; Bachtold A; Verlot P
    Nat Commun; 2018 Feb; 9(1):662. PubMed ID: 29445160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast quantum interference of a nanoparticle via optical potential control.
    Neumeier L; Ciampini MA; Romero-Isart O; Aspelmeyer M; Kiesel N
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2306953121. PubMed ID: 38227651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An analytical model for the detection of levitated nanoparticles in optomechanics.
    Rahman ATMA; Frangeskou AC; Barker PF; Morley GW
    Rev Sci Instrum; 2018 Feb; 89(2):023109. PubMed ID: 29495859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pulsed quantum optomechanics.
    Vanner MR; Pikovski I; Cole GD; Kim MS; Brukner C; Hammerer K; Milburn GJ; Aspelmeyer M
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16182-7. PubMed ID: 21900608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond.
    Neukirch LP; Gieseler J; Quidant R; Novotny L; Nick Vamivakas A
    Opt Lett; 2013 Aug; 38(16):2976-9. PubMed ID: 24104625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phononically shielded photonic-crystal mirror membranes for cavity quantum optomechanics.
    Enzian G; Wang Z; Simonsen A; Mathiassen J; Vibel T; Tsaturyan Y; Tagantsev A; Schliesser A; Polzik ES
    Opt Express; 2023 Apr; 31(8):13040-13052. PubMed ID: 37157450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macroscopic Quantum Superposition in Cavity Optomechanics.
    Liao JQ; Tian L
    Phys Rev Lett; 2016 Apr; 116(16):163602. PubMed ID: 27152802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Levitated Nanoparticles for Microscopic Thermodynamics-A Review.
    Gieseler J; Millen J
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spin-Mechanics with Nitrogen-Vacancy Centers and Trapped Particles.
    Perdriat M; Pellet-Mary C; Huillery P; Rondin L; Hétet G
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34206001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phonon counting and intensity interferometry of a nanomechanical resonator.
    Cohen JD; Meenehan SM; MacCabe GS; Gröblacher S; Safavi-Naeini AH; Marsili F; Shaw MD; Painter O
    Nature; 2015 Apr; 520(7548):522-5. PubMed ID: 25903632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heralded single-phonon preparation, storage, and readout in cavity optomechanics.
    Galland C; Sangouard N; Piro N; Gisin N; Kippenberg TJ
    Phys Rev Lett; 2014 Apr; 112(14):143602. PubMed ID: 24765960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential displacement measurement of the levitated particle using D-shaped mirrors in the optical tweezers.
    Chen Z; Kuang T; Han X; Li G; Zeng W; Xiong W; Xiao G; Luo H
    Opt Express; 2022 Aug; 30(17):30791-30798. PubMed ID: 36242176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Method of Higher-order Operators for Quantum Optomechanics.
    Khorasani S
    Sci Rep; 2018 Aug; 8(1):11566. PubMed ID: 30068920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cavity optomechanical chaos.
    Zhu GL; Hu CS; Wu Y; Lü XY
    Fundam Res; 2023 Jan; 3(1):63-74. PubMed ID: 38933568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cascaded optical transparency in multimode-cavity optomechanical systems.
    Fan L; Fong KY; Poot M; Tang HX
    Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Levitated Optomechanics with Meta-Atoms.
    Lepeshov S; Meyer N; Maurer P; Romero-Isart O; Quidant R
    Phys Rev Lett; 2023 Jun; 130(23):233601. PubMed ID: 37354398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong optomechanical coupling at room temperature by coherent scattering.
    de Los Ríos Sommer A; Meyer N; Quidant R
    Nat Commun; 2021 Jan; 12(1):276. PubMed ID: 33436586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cavity Quantum Optomechanical Nonlinearities and Position Measurement beyond the Breakdown of the Linearized Approximation.
    Clarke J; Neveu P; Khosla KE; Verhagen E; Vanner MR
    Phys Rev Lett; 2023 Aug; 131(5):053601. PubMed ID: 37595248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantum capacitance mediated carbon nanotube optomechanics.
    Blien S; Steger P; Hüttner N; Graaf R; Hüttel AK
    Nat Commun; 2020 Apr; 11(1):1636. PubMed ID: 32242140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.