These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38933563)

  • 1. Phonon and photon lasing dynamics in optomechanical cavities.
    Xiong J; Huang Z; Cui K; Feng X; Liu F; Zhang W; Huang Y
    Fundam Res; 2023 Jan; 3(1):37-44. PubMed ID: 38933563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floquet Phonon Lasing in Multimode Optomechanical Systems.
    Mercadé L; Pelka K; Burgwal R; Xuereb A; Martínez A; Verhagen E
    Phys Rev Lett; 2021 Aug; 127(7):073601. PubMed ID: 34459652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser
    Wang N; Wen H; Alvarado Zacarias JC; Antonio-Lopez JE; Zhang Y; Cruz Delgado D; Sillard P; Schülzgen A; Saleh BEA; Amezcua-Correa R; Li G
    Sci Adv; 2023 Jun; 9(26):eadg7841. PubMed ID: 37390201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipative coupling-induced phonon lasing.
    Zhang Q; Yang C; Sheng J; Wu H
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2207543119. PubMed ID: 36538481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity magnomechanics.
    Zhang X; Zou CL; Jiang L; Tang HX
    Sci Adv; 2016 Mar; 2(3):e1501286. PubMed ID: 27034983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optomechanical photon shuttling between photonic cavities.
    Li H; Li M
    Nat Nanotechnol; 2014 Nov; 9(11):913-9. PubMed ID: 25240675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lasing from active optomechanical resonators.
    Czerniuk T; Brüggemann C; Tepper J; Brodbeck S; Schneider C; Kamp M; Höfling S; Glavin BA; Yakovlev DR; Akimov AV; Bayer M
    Nat Commun; 2014 Jul; 5():4038. PubMed ID: 25008784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polariton-driven phonon laser.
    Chafatinos DL; Kuznetsov AS; Anguiano S; Bruchhausen AE; Reynoso AA; Biermann K; Santos PV; Fainstein A
    Nat Commun; 2020 Sep; 11(1):4552. PubMed ID: 32917874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optomechanical crystal with bound states in the continuum.
    Liu S; Tong H; Fang K
    Nat Commun; 2022 Jun; 13(1):3187. PubMed ID: 35676298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.
    Tian F; Sumikura H; Kuramochi E; Taniyama H; Takiguchi M; Notomi M
    Opt Express; 2016 Nov; 24(24):28039-28055. PubMed ID: 27906370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump.
    Chen H
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz cavity optomechanics using a topological nanophononic superlattice.
    Chang H; Li Z; Lou W; Yao Q; Lai JM; Liu B; Ni H; Niu Z; Chang K; Zhang J
    Nanoscale; 2022 Sep; 14(36):13046-13052. PubMed ID: 36056707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanical Frequency Comb Based on Multiple Nonlinear Dynamics.
    Wang Y; Zhang M; Shen Z; Xu GT; Niu R; Sun FW; Guo GC; Dong CH
    Phys Rev Lett; 2024 Apr; 132(16):163603. PubMed ID: 38701459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational regimes of lasers based on gain media with a large Raman scattering cross-section.
    Tereshchenkov EA; Andrianov ES; Zyablovsky AA; Pukhov AA; Vinogradov AP; Lisyansky AA
    Sci Rep; 2022 May; 12(1):7588. PubMed ID: 35534608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.