These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Quantifying local and global mass balance errors in physics-informed neural networks. Mamud ML; Mudunuru MK; Karra S; Ahmmed B Sci Rep; 2024 Jul; 14(1):15541. PubMed ID: 38969678 [TBL] [Abstract][Full Text] [Related]
5. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation. Alkhadhr S; Almekkawy M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210 [TBL] [Abstract][Full Text] [Related]
6. Physics-informed kernel function neural networks for solving partial differential equations. Fu Z; Xu W; Liu S Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153 [TBL] [Abstract][Full Text] [Related]
7. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations. Sun K; Feng X Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465 [TBL] [Abstract][Full Text] [Related]
8. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network. Fang Z IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5514-5526. PubMed ID: 33848251 [TBL] [Abstract][Full Text] [Related]
9. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks. Karnakov P; Litvinov S; Koumoutsakos P PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513 [TBL] [Abstract][Full Text] [Related]
10. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations. Goraya S; Sobh N; Masud A Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614 [TBL] [Abstract][Full Text] [Related]
12. FDM data driven U-Net as a 2D Laplace PINN solver. Maria Antony AN; Narisetti N; Gladilin E Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366 [TBL] [Abstract][Full Text] [Related]
13. Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Fabiani G; Galaris E; Russo L; Siettos C Chaos; 2023 Apr; 33(4):. PubMed ID: 37097940 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity. Roy AM; Bose R; Sundararaghavan V; Arróyave R Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712 [TBL] [Abstract][Full Text] [Related]
15. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data. Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308 [TBL] [Abstract][Full Text] [Related]
16. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Markidis S Front Big Data; 2021; 4():669097. PubMed ID: 34870188 [TBL] [Abstract][Full Text] [Related]
17. Investigating molecular transport in the human brain from MRI with physics-informed neural networks. Zapf B; Haubner J; Kuchta M; Ringstad G; Eide PK; Mardal KA Sci Rep; 2022 Sep; 12(1):15475. PubMed ID: 36104360 [TBL] [Abstract][Full Text] [Related]
18. Solving high-dimensional partial differential equations using deep learning. Han J; Jentzen A; E W Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389 [TBL] [Abstract][Full Text] [Related]
19. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis. Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347 [TBL] [Abstract][Full Text] [Related]