BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38933841)

  • 1. Exploring the potential for improving material utilization efficiency to secure lithium supply for China's battery supply chain.
    Sun X; Hao H; Geng Y; Liu Z; Zhao F
    Fundam Res; 2024 Jan; 4(1):167-177. PubMed ID: 38933841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target.
    Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S
    J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the evolution of cobalt use and implications through dynamic analysis of cobalt flows and stocks and the recycling potential of cobalt from urban mines in China during 2000-2021.
    Qiao D; Dai T; Ma Y; Gao T
    Waste Manag; 2023 May; 163():122-133. PubMed ID: 37011560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China's recycling policies.
    Zong Y; Yao P; Zhang X; Wang J; Song X; Zhao J; Wang Z; Zheng Y
    Waste Manag; 2023 Oct; 171():463-472. PubMed ID: 37801873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring potential opportunities for the efficient development of the cobalt industry in China by quantitatively tracking cobalt flows during the entire life cycle from 2000 to 2021.
    Qiao D; Dai T; Wang G; Ma Y; Fan H; Gao T; Wen B
    J Environ Manage; 2022 Sep; 318():115599. PubMed ID: 35780676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Dynamic Equilibrium Mechanism of Regional Lithium Flow for Transportation Electrification.
    Sun X; Hao H; Zhao F; Liu Z
    Environ Sci Technol; 2019 Jan; 53(2):743-751. PubMed ID: 30576596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010-2050.
    Qiao D; Wang G; Gao T; Wen B; Dai T
    Sci Total Environ; 2021 Apr; 764():142835. PubMed ID: 33097265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High concentration from resources to market heightens risk for power lithium-ion battery supply chains globally.
    Miao Y; Liu L; Xu K; Li J
    Environ Sci Pollut Res Int; 2023 May; 30(24):65558-65571. PubMed ID: 37085683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking and quantifying the cobalt flows in mainland China during 1994-2016: Insights into use, trade and prospective demand.
    Chen Z; Zhang L; Xu Z
    Sci Total Environ; 2019 Jul; 672():752-762. PubMed ID: 30974365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What drives embodied metal consumption in China's imports and exports.
    Huang JB; Chen X; Song Y
    Resour Policy; 2020 Dec; 69():101862. PubMed ID: 34173423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China.
    Yang H; Hu X; Zhang G; Dou B; Cui G; Yang Q; Yan X
    Waste Manag; 2024 Apr; 178():168-175. PubMed ID: 38401430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of China's water footprint and virtual water trade: A global trade assessment.
    Tian X; Sarkis J; Geng Y; Qian Y; Gao C; Bleischwitz R; Xu Y
    Environ Int; 2018 Dec; 121(Pt 1):178-188. PubMed ID: 30216770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the environmental impacts of global lithium-ion battery supply chain: A temporal, geographical, and technological perspective.
    Llamas-Orozco JA; Meng F; Walker GS; Abdul-Manan AFN; MacLean HL; Posen ID; McKechnie J
    PNAS Nexus; 2023 Nov; 2(11):pgad361. PubMed ID: 38034093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles.
    Shafique M; Akbar A; Rafiq M; Azam A; Luo X
    Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of lithium-ion batteries' supply-chain in Europe: Material flow analysis and environmental assessment.
    Bruno M; Fiore S
    J Environ Manage; 2024 May; 358():120758. PubMed ID: 38593735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Lithium Flow 1994-2015: Implications for Improving Resource Efficiency and Security.
    Sun X; Hao H; Zhao F; Liu Z
    Environ Sci Technol; 2018 Mar; 52(5):2827-2834. PubMed ID: 29406757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission impacts of China's solid waste import ban and COVID-19 in the copper supply chain.
    Ryter J; Fu X; Bhuwalka K; Roth R; Olivetti EA
    Nat Commun; 2021 Jun; 12(1):3753. PubMed ID: 34145227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration or fragmentation: the arrow of China's lithium product development.
    Du P; Ni Y; Zhang Y
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):16011-16027. PubMed ID: 38308784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.