These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3893415)

  • 1. Post-transcriptional regulation of chloramphenicol acetyl transferase.
    Byeon WH; Weisblum B
    Basic Life Sci; 1985; 30():823-34. PubMed ID: 3893415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transcriptional regulation of chloramphenicol acetyl transferase.
    Byeon WH; Weisblum B
    J Bacteriol; 1984 May; 158(2):543-50. PubMed ID: 6202672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance.
    Horinouchi S; Weisblum B
    J Bacteriol; 1982 May; 150(2):815-25. PubMed ID: 6950931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloramphenicol-induced translation of cat-86 mRNA requires two cis-acting regulatory regions.
    Ambulos NP; Mongkolsuk S; Kaufman JD; Lovett PS
    J Bacteriol; 1985 Nov; 164(2):696-703. PubMed ID: 2414270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies.
    Shaw WV; Brenner DG; LeGrice SF; Skinner SE; Hawkins AR
    FEBS Lett; 1985 Jan; 179(1):101-6. PubMed ID: 3855295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive variants of the pC194 cat gene exhibit DNA alterations in the vicinity of the ribosome binding site sequence.
    Ambulos NP; Chow JH; Mongkolsuk S; Preis LH; Vollmar WR; Lovett PS
    Gene; 1984 May; 28(2):171-6. PubMed ID: 6588016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transcription termination signal immediately precedes the coding sequence for the chloramphenicol-inducible plasmid gene cat-86.
    Ambulos NP; Mongkolsuk S; Lovett PS
    Mol Gen Genet; 1985; 199(1):70-5. PubMed ID: 3923300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus.
    Harwood CR; Bell DE; Winston AK
    Gene; 1987; 54(2-3):267-73. PubMed ID: 3477516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alterations in the translation control region on bacterial gene expression: use of cat gene constructs transcribed from the lac promoter as a model system.
    Schottel JL; Sninsky JJ; Cohen SN
    Gene; 1984 May; 28(2):177-93. PubMed ID: 6376284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloramphenicol-inducible gene expression in Bacillus subtilis.
    Duvall EJ; Williams DM; Lovett PS; Rudolph C; Vasantha N; Guyer M
    Gene; 1983 Oct; 24(2-3):171-7. PubMed ID: 6416927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The low level expression of chloramphenicol acetyltransferase (CAT) mRNA in Escherichia coli is not dependent on either Shine-Dalgarno or the downstream boxes in the CAT gene.
    Odjakova M; Golshani A; Ivanov G; Abou Haidar M; Ivanov I
    Microbiol Res; 1998 Aug; 153(2):173-8. PubMed ID: 9760750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mRNA for an inducible chloramphenicol acetyltransferase gene is cleaved into discrete fragments in Bacillus subtilis.
    Ambulos NP; Duvall EJ; Lovett PS
    J Bacteriol; 1987 Mar; 169(3):967-72. PubMed ID: 3029040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis.
    Duvall EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3939-43. PubMed ID: 3086871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the regulatory sequences needed for induction of the chloramphenicol acetyltransferase gene cat-86 by chloramphenicol and amicetin.
    Ambulos NP; Duvall EJ; Lovett PS
    J Bacteriol; 1986 Sep; 167(3):842-9. PubMed ID: 3462183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader.
    Alexieva Z; Duvall EJ; Ambulos NP; Kim UJ; Lovett PS
    Proc Natl Acad Sci U S A; 1988 May; 85(9):3057-61. PubMed ID: 3129723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader.
    Duvall EJ; Ambulos NP; Lovett PS
    J Bacteriol; 1987 Sep; 169(9):4235-41. PubMed ID: 3114238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations that affect the translation efficiency of Tn9-derived cat gene in Bacillus subtilis.
    Lin CK; Goldfarb DS; Doi RH; Rodriguez RL
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):173-7. PubMed ID: 2982142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of a Bacillus pumilus gene specifying chloramphenicol acetyltransferase.
    Harwood CR; Williams DM; Lovett PS
    Gene; 1983 Oct; 24(2-3):163-9. PubMed ID: 6315534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloramphenicol-induced translational activation of cat messenger RNA in vitro.
    Dick T; Matzura H
    J Mol Biol; 1990 Apr; 212(4):661-8. PubMed ID: 2109801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.