These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38934241)

  • 1. Stochastic Character Mapping, Bayesian Model Selection, and Biosynthetic Pathways Shed New Light on the Evolution of Habitat Preference in Cyanobacteria.
    Bianchini G; Hagemann M; Sánchez-Baracaldo P
    Syst Biol; 2024 Jun; ():. PubMed ID: 38934241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for cyanobacteria.
    Blank CE
    J Phycol; 2013 Oct; 49(5):880-95. PubMed ID: 27007313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compatible solute biosynthesis in cyanobacteria.
    Klähn S; Hagemann M
    Environ Microbiol; 2011 Mar; 13(3):551-62. PubMed ID: 21054739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria.
    Goh F; Barrow KD; Burns BP; Neilan BA
    Arch Microbiol; 2010 Dec; 192(12):1031-8. PubMed ID: 20936259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freshwater Cyanobacterium
    Liang Y; Zhang M; Wang M; Zhang W; Qiao C; Luo Q; Lu X
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential.
    Kirsch F; Klähn S; Hagemann M
    Front Microbiol; 2019; 10():2139. PubMed ID: 31572343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein.
    Pade N; Compaoré J; Klähn S; Stal LJ; Hagemann M
    Environ Microbiol; 2012 May; 14(5):1261-71. PubMed ID: 22404882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous Production of Glycine Betaine Using
    Ferreira EA; Pacheco CC; Rodrigues JS; Pinto F; Lamosa P; Fuente D; Urchueguía J; Tamagnini P
    Front Bioeng Biotechnol; 2021; 9():821075. PubMed ID: 35071221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments.
    Klähn S; Steglich C; Hess WR; Hagemann M
    Environ Microbiol; 2010 Jan; 12(1):83-94. PubMed ID: 19735283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance.
    Georges des Aulnois M; Roux P; Caruana A; Réveillon D; Briand E; Hervé F; Savar V; Bormans M; Amzil Z
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean.
    Herrmann AJ; Gehringer MM
    Geobiology; 2019 Jul; 17(4):343-359. PubMed ID: 30874335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early photosynthetic eukaryotes inhabited low-salinity habitats.
    Sánchez-Baracaldo P; Raven JA; Pisani D; Knoll AH
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7737-E7745. PubMed ID: 28808007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sucrose in bloom-forming cyanobacteria: loss and gain of genes involved in its biosynthesis.
    Kolman MA; Salerno GL
    Environ Microbiol; 2016 Feb; 18(2):439-49. PubMed ID: 26913819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology of cyanobacterial salt acclimation.
    Hagemann M
    FEMS Microbiol Rev; 2011 Jan; 35(1):87-123. PubMed ID: 20618868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates.
    Cabello-Yeves PJ; Callieri C; Picazo A; Schallenberg L; Huber P; Roda-Garcia JJ; Bartosiewicz M; Belykh OI; Tikhonova IV; Torcello-Requena A; De Prado PM; Puxty RJ; Millard AD; Camacho A; Rodriguez-Valera F; Scanlan DJ
    BMC Biol; 2022 Aug; 20(1):175. PubMed ID: 35941649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales.
    Youssef NH; Savage-Ashlock KN; McCully AL; Luedtke B; Shaw EI; Hoff WD; Elshahed MS
    ISME J; 2014 Mar; 8(3):636-649. PubMed ID: 24048226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origin of oxygenic photosynthesis and Cyanobacteria.
    Sánchez-Baracaldo P; Cardona T
    New Phytol; 2020 Feb; 225(4):1440-1446. PubMed ID: 31598981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation.
    Chen MY; Teng WK; Zhao L; Hu CX; Zhou YK; Han BP; Song LR; Shu WS
    ISME J; 2021 Jan; 15(1):211-227. PubMed ID: 32943748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterosides--compatible solutes occurring in prokaryotic and eukaryotic phototrophs.
    Hagemann M; Pade N
    Plant Biol (Stuttg); 2015 Sep; 17(5):927-34. PubMed ID: 25996303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacteria evolution: Insight from the fossil record.
    Demoulin CF; Lara YJ; Cornet L; François C; Baurain D; Wilmotte A; Javaux EJ
    Free Radic Biol Med; 2019 Aug; 140():206-223. PubMed ID: 31078731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.