These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38934387)

  • 21. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
    Compera N; Atwell S; Wirth J; Wolfrum B; Meier M
    Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding.
    Adamopoulos C; Gharia A; Niknejad A; Stojanović V; Anwar M
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33202594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics.
    Xiao L; Liu X; Zhong R; Zhang K; Zhang X; Zhou X; Lin B; Du Y
    Electrophoresis; 2013 Nov; 34(20-21):3003-7. PubMed ID: 24038030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printing of Elastic Membranes for Fluidic Pumping and Demonstration of Reciprocation Inserts on the Microfluidic Disc.
    Bauer M; Bahani A; Ogata T; Madou M
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31430910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addendum: A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1377. PubMed ID: 36899100
    [No Abstract]   [Full Text] [Related]  

  • 31. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing of hollow geometries using blocking liquid substitution stereolithography.
    Bhanvadia AA; Farley RT; Noh Y; Nishida T
    Sci Rep; 2023 Jan; 13(1):434. PubMed ID: 36624138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of print angulation on the accuracy and precision of 3D-printed orthodontic retainers.
    Williams A; Bencharit S; Yang IH; Stilianoudakis SC; Carrico CK; Tüfekçi E
    Am J Orthod Dentofacial Orthop; 2022 Jan; 161(1):133-139. PubMed ID: 35012743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Direction in Microfluidics: Printed Porous Materials.
    Evard H; Priks H; Saar I; Aavola H; Tamm T; Leito I
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34201216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging.
    Mu X; Chen FD; Dang KM; Brunk MGK; Li J; Wahn H; Stalmashonak A; Ding P; Luo X; Chua H; Lo GQ; Poon JKS; Sacher WD
    Front Neurosci; 2023; 17():1213265. PubMed ID: 37521687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators.
    Ahmadianyazdi A; Miller IJ; Folch A
    Lab Chip; 2023 Sep; 23(18):4019-4032. PubMed ID: 37584639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printed Microfluidic Probes.
    Brimmo A; Goyette PA; Alnemari R; Gervais T; Qasaimeh MA
    Sci Rep; 2018 Jul; 8(1):10995. PubMed ID: 30030464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Tumor Perfusion and Real-Time Monitoring in a Multiplexed 3D Printed Microdevice.
    Markoski A; Wong IY; Borenstein JT
    Methods Mol Biol; 2023; 2679():287-304. PubMed ID: 37300624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.