These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 38935217)
1. Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma. Han T; Bai Y; Liu Y; Dong Y; Liang C; Gao L; Zhou J; Guo J; Wu J; Hu D Funct Integr Genomics; 2024 Jun; 24(4):118. PubMed ID: 38935217 [TBL] [Abstract][Full Text] [Related]
2. Advancing lung adenocarcinoma prognosis and immunotherapy prediction with a multi-omics consensus machine learning approach. Lin H; Zhang X; Feng Y; Gong Z; Li J; Wang W; Fan J J Cell Mol Med; 2024 Jul; 28(13):e18520. PubMed ID: 38958523 [TBL] [Abstract][Full Text] [Related]
3. Integrating multi-omics and machine learning survival frameworks to build a prognostic model based on immune function and cell death patterns in a lung adenocarcinoma cohort. Xie Y; Chen H; Tian M; Wang Z; Wang L; Zhang J; Wang X; Lian C Front Immunol; 2024; 15():1460547. PubMed ID: 39346927 [TBL] [Abstract][Full Text] [Related]
4. Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma. Liu J; Li H; Zhang N; Dong Q; Liang Z Curr Med Chem; 2024; 31(25):4034-4055. PubMed ID: 38685772 [TBL] [Abstract][Full Text] [Related]
5. Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma. Xu S; Chen X; Ying H; Chen J; Ye M; Lin Z; Zhang X; Shen T; Li Z; Zheng Y; Zhang D; Ke Y; Chen Z; Lu Z BMC Cancer; 2024 Sep; 24(1):1138. PubMed ID: 39267056 [TBL] [Abstract][Full Text] [Related]
6. Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma. Zhang L; Guan M; Zhang X; Yu F; Lai F J Cancer Res Clin Oncol; 2023 Nov; 149(15):13553-13574. PubMed ID: 37507593 [TBL] [Abstract][Full Text] [Related]
7. Signatures of Multi-Omics Reveal Distinct Tumor Immune Microenvironment Contributing to Immunotherapy in Lung Adenocarcinoma. Huang Z; Li B; Guo Y; Wu L; Kou F; Yang L Front Immunol; 2021; 12():723172. PubMed ID: 34539658 [TBL] [Abstract][Full Text] [Related]
8. Deciphering lung adenocarcinoma prognosis and immunotherapy response through an AI-driven stemness-related gene signature. Ye B; Hongting G; Zhuang W; Chen C; Yi S; Tang X; Jiang A; Zhong Y J Cell Mol Med; 2024 Jul; 28(14):e18564. PubMed ID: 39046884 [TBL] [Abstract][Full Text] [Related]
9. Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma. Han AX; Long BY; Li CY; Huang DD; Xiong EQ; Li FJ; Wu GL; Liu Q; Yang GB; Hu HY Apoptosis; 2024 Aug; 29(7-8):1090-1108. PubMed ID: 38519636 [TBL] [Abstract][Full Text] [Related]
10. Identification of a novel ADCC-related gene signature for predicting the prognosis and therapy response in lung adenocarcinoma. Zhang L; Zhang X; Guan M; Zeng J; Yu F; Lai F Inflamm Res; 2024 May; 73(5):841-866. PubMed ID: 38507067 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive analysis of PPP4C's impact on prognosis, immune microenvironment, and immunotherapy response in lung adenocarcinoma using single-cell sequencing and multi-omics. Wang K; Peng B; Xu R; Lu T; Chang X; Shen Z; Shi J; Li M; Wang C; Zhou X; Xu C; Chang H; Zhang L Front Immunol; 2024; 15():1416632. PubMed ID: 39026674 [TBL] [Abstract][Full Text] [Related]
12. Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response. Zhang L; Zhang X; Guan M; Zeng J; Yu F; Lai F Respir Res; 2024 May; 25(1):206. PubMed ID: 38745285 [TBL] [Abstract][Full Text] [Related]
13. Multi-omics analysis unravels the underlying mechanisms of poor prognosis and differential therapeutic responses of solid predominant lung adenocarcinoma. Li F; Wang S; Wang Y; Lv Z; Jin D; Yi H; Fu L; Zhai S; Xiao T; Mao Y Front Immunol; 2023; 14():1101649. PubMed ID: 36845145 [TBL] [Abstract][Full Text] [Related]
14. Leveraging diverse cell-death patterns to predict the clinical outcome of immune checkpoint therapy in lung adenocarcinoma: Based on muti-omics analysis and vitro assay. Liang H; Li Y; Qu Y; Zhang L Oncol Res; 2023; 32(2):393-407. PubMed ID: 38186574 [TBL] [Abstract][Full Text] [Related]
15. Molecular classification reveals the sensitivity of lung adenocarcinoma to radiotherapy and immunotherapy: multi-omics clustering based on similarity network fusion. Zhang J; Li Y; Dai W; Tang F; Wang L; Wang Z; Li S; Ji Q; Zhang J; Liao Z; Yu J; Xu Y; Gong J; Hu J; Li J; Guo X; He F; Han L; Gong Y; Ouyang W; Wang Z; Xie C Cancer Immunol Immunother; 2024 Mar; 73(4):71. PubMed ID: 38430394 [TBL] [Abstract][Full Text] [Related]
16. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma. Mao S; Wang Y; Chao N; Zeng L; Zhang L Cell Oncol (Dordr); 2024 Oct; 47(5):1697-1713. PubMed ID: 38616208 [TBL] [Abstract][Full Text] [Related]
17. Identifying an immunogenic cell death-related gene signature contributes to predicting prognosis, immunotherapy efficacy, and tumor microenvironment of lung adenocarcinoma. Li X; Zhang D; Guo P; Ma S; Gao S; Li S; Yuan Y Aging (Albany NY); 2024 Apr; 16(7):6290-6313. PubMed ID: 38575204 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive analysis of the immunogenic cell death-related signature for predicting prognosis and immunotherapy efficiency in patients with lung adenocarcinoma. Cui Y; Li Y; Long S; Xu Y; Liu X; Sun Z; Sun Y; Hu J; Li X BMC Med Genomics; 2023 Aug; 16(1):184. PubMed ID: 37553698 [TBL] [Abstract][Full Text] [Related]
19. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. Wei Q; Jiang X; Miao X; Zhang Y; Chen F; Zhang P J Cancer Res Clin Oncol; 2023 Oct; 149(13):11351-11368. PubMed ID: 37378675 [TBL] [Abstract][Full Text] [Related]
20. A Novel Nucleic Acid Sensing-related Genes Signature for Predicting Immunotherapy Efficacy and Prognosis of Lung Adenocarcinoma. Peng X; Wu H; Zhang B; Xu C; Lang J Curr Cancer Drug Targets; 2024; 24(4):425-444. PubMed ID: 37592781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]