These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficient mineralization and osteogenic gene overexpression of mesenchymal stem cells on decellularized spinach leaf scaffold. Salehi A; Mobarhan MA; Mohammadi J; Shahsavarani H; Shokrgozar MA; Alipour A Gene; 2020 Oct; 757():144852. PubMed ID: 32599019 [TBL] [Abstract][Full Text] [Related]
3. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Labedz-Maslowska A; Bryniarska N; Kubiak A; Kaczmarzyk T; Sekula-Stryjewska M; Noga S; Boruczkowski D; Madeja Z; Zuba-Surma E Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859105 [TBL] [Abstract][Full Text] [Related]
4. Creation of a contractile biomaterial from a decellularized spinach leaf without ECM protein coating: An in vitro study. Robbins ER; Pins GD; Laflamme MA; Gaudette GR J Biomed Mater Res A; 2020 Oct; 108(10):2123-2132. PubMed ID: 32323417 [TBL] [Abstract][Full Text] [Related]
5. Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells. Dizaj SM; Rezaei Y; Namaki F; Sharifi S; Abdolahinia ED Pharm Nanotechnol; 2024; 12(3):262-268. PubMed ID: 37592779 [TBL] [Abstract][Full Text] [Related]
6. Preliminary Evaluation of Proliferation, Wound Healing Properties, Osteogenic and Chondrogenic Potential of Dental Pulp Stem Cells Obtained from Healthy and Periodontitis Affected Teeth. Fageeh HN Cells; 2021 Aug; 10(8):. PubMed ID: 34440887 [TBL] [Abstract][Full Text] [Related]
7. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795 [TBL] [Abstract][Full Text] [Related]
8. Berberine Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Activating EGFR-MAPK-Runx2 Pathways. Xin BC; Wu QS; Jin S; Luo AH; Sun DG; Wang F Pathol Oncol Res; 2020 Jul; 26(3):1677-1685. PubMed ID: 31598896 [TBL] [Abstract][Full Text] [Related]
9. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. Paduano F; Marrelli M; Alom N; Amer M; White LJ; Shakesheff KM; Tatullo M J Biomater Sci Polym Ed; 2017 Jun; 28(8):730-748. PubMed ID: 28285576 [TBL] [Abstract][Full Text] [Related]
10. Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. Navidi G; Same S; Allahvirdinesbat M; Nakhostin Panahi P; Dindar Safa K J Biomater Sci Polym Ed; 2024 Sep; 35(13):2090-2114. PubMed ID: 38953859 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518 [TBL] [Abstract][Full Text] [Related]
12. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
13. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067 [TBL] [Abstract][Full Text] [Related]
17. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586 [TBL] [Abstract][Full Text] [Related]
18. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Xia Y; Chen H; Zhang F; Wang L; Chen B; Reynolds MA; Ma J; Schneider A; Gu N; Xu HHK Artif Cells Nanomed Biotechnol; 2018; 46(sup1):423-433. PubMed ID: 29355052 [TBL] [Abstract][Full Text] [Related]
19. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. Navidi G; Allahvirdinesbat M; Al-Molki SMM; Davaran S; Panahi PN; Aghazadeh M; Akbarzadeh A; Eftekhari A; Safa KD Int J Biol Macromol; 2021 Sep; 187():281-295. PubMed ID: 34314794 [TBL] [Abstract][Full Text] [Related]
20. Spinach and Chive for Kidney Tubule Engineering: the Limitations of Decellularized Plant Scaffolds and Vasculature. Jansen K; Evangelopoulou M; Pou Casellas C; Abrishamcar S; Jansen J; Vermonden T; Masereeuw R AAPS J; 2020 Dec; 23(1):11. PubMed ID: 33369701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]