BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38935266)

  • 1. Characterization of weakly nonlinear effects in relationship to transducer parameters in focused ultrasound therapy.
    Xu P; Wu H; Shen G
    Med Phys; 2024 Jun; ():. PubMed ID: 38935266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigation of Layered Homogeneous Skull Model for Simulations of Transcranial Focused Ultrasound.
    Seo H; Han M; Choi JR; Kim S; Park J; Lee EH
    Neuromodulation; 2024 Apr; ():. PubMed ID: 38691075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.
    Kyriakou A; Neufeld E; Werner B; Székely G; Kuster N
    J Ther Ultrasound; 2015; 3():11. PubMed ID: 26236478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
    Yuldashev PV; Kreider W; Sapozhnikov OA; Farr N; Partanen A; Bailey MR; Khokhlova V
    IEEE Int Ultrason Symp; 2012 Oct; 2012():1-4. PubMed ID: 26203345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation.
    Pasquinelli C; Montanaro H; Lee HJ; Hanson LG; Kim H; Kuster N; Siebner HR; Neufeld E; Thielscher A
    J Neural Eng; 2020 Jul; 17(4):046010. PubMed ID: 32485690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Generalized Split-Step Angular Spectrum Method for Efficient Simulation of Wave Propagation in Heterogeneous Media.
    Top CB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2687-2696. PubMed ID: 33891551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phase aberration on transabdominal focusing for a large aperture, low
    Yeats E; Gupta D; Xu Z; Hall TL
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35772383
    [No Abstract]   [Full Text] [Related]  

  • 12. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for simulating ultrasound imaging based on first order nonlinear pressure-velocity relations.
    Du Y; Fan R; Li Y; Chen S; Jensen JA
    Ultrasonics; 2016 Jul; 69():152-65. PubMed ID: 27107165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy.
    Park TY; Kim HJ; Park SH; Chang WS; Kim H; Yoon K
    Comput Methods Programs Biomed; 2022 Jun; 219():106777. PubMed ID: 35397411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation.
    Ramaekers P; Ries M; Moonen CT; de Greef M
    Med Phys; 2017 Mar; 44(3):1071-1088. PubMed ID: 28058731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cerebrospinal fluid on power absorption during transcranial magnetic resonance-guided focused ultrasound treatment.
    Slominski E; Marchant J; Judd W; Alexander MD; Rolston JD; Odéen H; Rieke V; Christensen DA; Parker DL
    Med Phys; 2023 Jun; 50(6):3245-3257. PubMed ID: 37078516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
    Robertson J; Martin E; Cox B; Treeby BE
    Phys Med Biol; 2017 Apr; 62(7):2559-2580. PubMed ID: 28165334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer.
    Yoon K; Lee W; Croce P; Cammalleri A; Yoo SS
    Phys Med Biol; 2018 May; 63(10):105001. PubMed ID: 29658494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.