These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38935266)

  • 21. Global sonication of the human intracranial space via a jumbo planar transducer.
    Brinker ST; Yoon K; Benveniste H
    Ultrasonics; 2023 Sep; 134():107062. PubMed ID: 37343366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.
    Kreider W; Yuldashev PV; Sapozhnikov OA; Farr N; Partanen A; Bailey MR; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1683-98. PubMed ID: 25004539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "HIFU Beam:" A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium.
    Yuldashev PV; Karzova MM; Kreider W; Rosnitskiy PB; Sapozhnikov OA; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):2837-2852. PubMed ID: 33877971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound.
    Gupta P; Srivastava A
    Int J Hyperthermia; 2018; 35(1):419-434. PubMed ID: 30307345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A head template for computational dose modelling for transcranial focused ultrasound stimulation.
    Hosseini S; Puonti O; Treeby B; Hanson LG; Thielscher A
    Neuroimage; 2023 Aug; 277():120227. PubMed ID: 37321357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus.
    Huang Y; Wen P; Song B; Li Y
    Ultrasonics; 2022 Aug; 124():106724. PubMed ID: 35299039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of nonlinear ultrasound propagation during hyperthermia treatments.
    Hynynen K
    Med Phys; 1991; 18(6):1156-63. PubMed ID: 1753899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rapid element pressure field simulation method for transcranial phase correction in focused ultrasound therapy.
    Xu P; Wu N; Shen G
    Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37934058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids.
    Ginter S; Liebler M; Steiger E; Dreyer T; Riedlinger RE
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2049-59. PubMed ID: 12051425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental Validation of k-Wave: Nonlinear Wave Propagation in Layered, Absorbing Fluid Media.
    Martin E; Jaros J; Treeby BE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):81-91. PubMed ID: 31535990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.
    Jing Y; Tao M; Clement GT
    J Acoust Soc Am; 2011 Jan; 129(1):32-46. PubMed ID: 21302985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A transducer positioning method for transcranial focused ultrasound treatment of brain tumors.
    Gao P; Sun Y; Zhang G; Li C; Wang L
    Front Neurosci; 2023; 17():1277906. PubMed ID: 37904813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A heterogeneous nonlinear attenuating full-wave model of ultrasound.
    Pinton GF; Dahl J; Rosenzweig S; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results.
    Wójcik J; Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2008 Dec; 48(8):707-15. PubMed ID: 18474387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcranial phase aberration correction using beam simulations and MR-ARFI.
    Vyas U; Kaye E; Pauly KB
    Med Phys; 2014 Mar; 41(3):032901. PubMed ID: 24593740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonthermal ablation of deep brain targets: A simulation study on a large animal model.
    Top CB; White PJ; McDannold NJ
    Med Phys; 2016 Feb; 43(2):870-82. PubMed ID: 26843248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.