These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38935341)

  • 1. Deep-learning map segmentation for protein X-ray crystallographic structure determination.
    Skubák P
    Acta Crystallogr D Struct Biol; 2024 Jul; 80(Pt 7):528-534. PubMed ID: 38935341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning solution for crystallographic structure determination.
    Pan T; Jin S; Miller MD; Kyrillidis A; Phillips GN
    IUCrJ; 2023 Jul; 10(Pt 4):487-496. PubMed ID: 37409806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
    Si D; Moritz SA; Pfab J; Hou J; Cao R; Wang L; Wu T; Cheng J
    Sci Rep; 2020 Mar; 10(1):4282. PubMed ID: 32152330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular X-ray structure determination using weak, single-wavelength anomalous data.
    Bunkóczi G; McCoy AJ; Echols N; Grosse-Kunstleve RW; Adams PD; Holton JM; Read RJ; Terwilliger TC
    Nat Methods; 2015 Feb; 12(2):127-30. PubMed ID: 25532136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.
    Yang C; Pflugrath JW; Courville DA; Stence CN; Ferrara JD
    Acta Crystallogr D Biol Crystallogr; 2003 Nov; 59(Pt 11):1943-57. PubMed ID: 14573949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination.
    Panjikar S; Parthasarathy V; Lamzin VS; Weiss MS; Tucker PA
    Acta Crystallogr D Biol Crystallogr; 2009 Oct; 65(Pt 10):1089-97. PubMed ID: 19770506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum-likelihood determination of anomalous substructures.
    Read RJ; McCoy AJ
    Acta Crystallogr D Struct Biol; 2018 Feb; 74(Pt 2):98-105. PubMed ID: 29533235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-crystal anomalous diffraction for low-resolution macromolecular phasing.
    Liu Q; Zhang Z; Hendrickson WA
    Acta Crystallogr D Biol Crystallogr; 2011 Jan; 67(Pt 1):45-59. PubMed ID: 21206061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.
    Weiss MS
    Methods Mol Biol; 2017; 1607():401-420. PubMed ID: 28573583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.
    Thorn A
    Methods Mol Biol; 2017; 1607():357-376. PubMed ID: 28573581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the novel |ρ|-based phasing algorithm to the solution of anomalous scattering substructures from SAD data of protein crystals.
    Rius J; Torrelles X
    Acta Crystallogr A Found Adv; 2022 Nov; 78(Pt 6):473-481. PubMed ID: 36318068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.
    Terwilliger TC; Bunkóczi G; Hung LW; Zwart PH; Smith JL; Akey DL; Adams PD
    Acta Crystallogr D Struct Biol; 2016 Mar; 72(Pt 3):346-58. PubMed ID: 26960122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser.
    Hunter MS; Yoon CH; DeMirci H; Sierra RG; Dao EH; Ahmadi R; Aksit F; Aquila AL; Ciftci H; Guillet S; Hayes MJ; Lane TJ; Liang M; Lundström U; Koglin JE; Mgbam P; Rao Y; Zhang L; Wakatsuki S; Holton JM; Boutet S
    Nat Commun; 2016 Nov; 7():13388. PubMed ID: 27811937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error.
    Read RJ; McCoy AJ
    Acta Crystallogr D Struct Biol; 2016 Mar; 72(Pt 3):375-87. PubMed ID: 26960124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD.
    Bent AF; Mann G; Houssen WE; Mykhaylyk V; Duman R; Thomas L; Jaspars M; Wagner A; Naismith JH
    Acta Crystallogr D Struct Biol; 2016 Nov; 72(Pt 11):1174-1180. PubMed ID: 27841750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The copper(II)-binding tripeptide GHK, a valuable crystallization and phasing tag for macromolecular crystallography.
    Mehr A; Henneberg F; Chari A; Görlich D; Huyton T
    Acta Crystallogr D Struct Biol; 2020 Dec; 76(Pt 12):1222-1232. PubMed ID: 33263328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Lanthanide Complex for
    Prieto-Castañeda A; Martínez-Caballero S; Agarrabeitia AR; García-Moreno I; Moya S; Ortiz MJ; Hermoso JA
    ACS Appl Bio Mater; 2021 May; 4(5):4575-4581. PubMed ID: 35006794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Likelihood-based estimation of substructure content from single-wavelength anomalous diffraction (SAD) intensity data.
    Hatti KS; McCoy AJ; Read RJ
    Acta Crystallogr D Struct Biol; 2021 Jul; 77(Pt 7):880-893. PubMed ID: 34196615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-wavelength phasing strategy for quasi-racemic protein crystal diffraction data.
    Sawaya MR; Pentelute BL; Kent SB; Yeates TO
    Acta Crystallogr D Biol Crystallogr; 2012 Jan; 68(Pt 1):62-8. PubMed ID: 22194334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.