BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38936036)

  • 1. Phase transformation of schwertmannite in paddy soil under different water management regimes and its impact on the migration of arsenic in soil.
    Wang R; Zhuang J; Chen S; Li H; Wang X; Ning Z; Liu C; Zheng G; Zhou L
    Environ Pollut; 2024 Jun; 357():124452. PubMed ID: 38936036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediating flooding paddy soils with schwertmannite greatly reduced arsenic accumulation in rice (Oryza sativa L.) but did not decrease the utilization efficiency of P fertilizer.
    Wang R; Guo Y; Song Y; Guo Y; Wang X; Yuan Q; Ning Z; Liu C; Zhou L; Zheng G
    Environ Pollut; 2023 May; 324():121383. PubMed ID: 36870598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils].
    Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL
    Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient co-stabilization of arsenic and cadmium in farmland soil by schwertmannite under long-term flooding-drying condition.
    Wang X; Wang L; Zhang Y; Zhang M; Zhang D; Zhou L
    Environ Pollut; 2024 Jun; 350():124005. PubMed ID: 38648965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of Water Management on the Transformation of Iron Oxide Forms in Paddy Soils and Its Coupling with Changes in Cadmium Activity].
    Li MY; Zhang XT; Liu HY; Wei SQ
    Huan Jing Ke Xue; 2022 Aug; 43(8):4301-4312. PubMed ID: 35971726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils.
    Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X
    Environ Res; 2024 May; 249():118421. PubMed ID: 38325790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.
    Yang Z; Wu Z; Liao Y; Liao Q; Yang W; Chai L
    Chemosphere; 2017 Aug; 181():1-8. PubMed ID: 28414954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roxarsone transformation and its impacts on soil enzyme activity in paddy soils: A new insight into water flooding effects.
    Zhao YP; Cui JL; Fang LP; An YL; Gan SC; Guo PR; Chen JH
    Environ Res; 2021 Nov; 202():111636. PubMed ID: 34245733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of Paddy Soil Organic Carbon Mineralization and Influencing Factors Under Different Water Conditions and Microbial Biomass Levels].
    Liu Q; Li YH; Li Z; Wei XM; Zhu ZK; Wu JS; Ge TD
    Huan Jing Ke Xue; 2021 May; 42(5):2440-2448. PubMed ID: 33884815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron.
    Huang R; Wang X; Xing B
    Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil.
    Hong Z; Hu S; Yang Y; Deng Z; Li X; Liu T; Li F
    Water Res; 2023 Aug; 242():120286. PubMed ID: 37399690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic behavior across soil-water interfaces in paddy soils: Coupling, decoupling and speciation.
    Yuan ZF; Gustave W; Boyle J; Sekar R; Bridge J; Ren Y; Tang X; Guo B; Chen Z
    Chemosphere; 2021 Apr; 269():128713. PubMed ID: 33162156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cd isotope fractionation in a soil-rice system: Roles of pH and mineral transformation during Cd immobilization and migration processes.
    Zhong S; Liu T; Li X; Yin M; Yin H; Tong H; Huang F; Li F
    Sci Total Environ; 2023 Nov; 900():166435. PubMed ID: 37598957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.