These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38936151)

  • 1. EMG-based prediction of step direction for a better control of lower limb wearable devices.
    Anselmino E; Mazzoni A; Micera S
    Comput Methods Programs Biomed; 2024 Sep; 254():108305. PubMed ID: 38936151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early decoding of walking tasks with minimal set of EMG channels.
    Barberi F; Iberite F; Anselmino E; Randi P; Sacchetti R; Gruppioni E; Mazzoni A; Micera S
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36996821
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of an EMG-Based Muscle Health Model for Elbow Trauma Patients.
    Farago E; Chinchalkar S; Lizotte DJ; Trejos AL
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input.
    Joshi D; Hahn ME
    Ann Biomed Eng; 2016 Apr; 44(4):1275-84. PubMed ID: 26224525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning for Electromyographic Lower-Limb Motion Signal Classification Using Residual Learning.
    Sun J; Wang Y; Hou J; Li G; Sun B; Lu P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2078-2086. PubMed ID: 38771681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals.
    Di Nardo F; Morbidoni C; Mascia G; Verdini F; Fioretti S
    Biomed Eng Online; 2020 Jul; 19(1):58. PubMed ID: 32723335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation.
    Tacca N; Dunlap C; Donegan SP; Hardin JO; Meyers E; Darrow MJ; Colachis Iv S; Gillman A; Friedenberg DA
    Sci Rep; 2024 Aug; 14(1):18564. PubMed ID: 39122791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
    Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA
    JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks.
    Lencioni T; Carpinella I; Rabuffetti M; Marzegan A; Ferrarin M
    Sci Data; 2019 Dec; 6(1):309. PubMed ID: 31811148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding hand and wrist movement intention from chronic stroke survivors with hemiparesis using a user-friendly, wearable EMG-based neural interface.
    Meyers EC; Gabrieli D; Tacca N; Wengerd L; Darrow M; Schlink BR; Baumgart I; Friedenberg DA
    J Neuroeng Rehabil; 2024 Jan; 21(1):7. PubMed ID: 38218901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction.
    Huang P; Wang H; Wang Y; Liu Z; Samuel OW; Yu M; Li X; Chen S; Li G
    Comput Math Methods Med; 2020; 2020():5694265. PubMed ID: 32351614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of feedforward toe walking motor program is impaired in children with cerebral palsy.
    Lorentzen J; Willerslev-Olsen M; Hüche Larsen H; Farmer SF; Nielsen JB
    Brain; 2019 Mar; 142(3):526-541. PubMed ID: 30726881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification.
    Joshi D; Nakamura BH; Hahn ME
    Med Eng Phys; 2015 May; 37(5):518-24. PubMed ID: 25862333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sock-Type Wearable Sensor for Estimating Lower Leg Muscle Activity Using Distal EMG Signals.
    Isezaki T; Kadone H; Niijima A; Aoki R; Watanabe T; Kimura T; Suzuki K
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Sensing Can Improve Continuous Classification of Discrete Ambulation Modes Compared to Surface Electromyography.
    Rabe KG; Jahanandish MH; Boehm JR; Majewicz Fey A; Hoyt K; Fey NP
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1379-1388. PubMed ID: 33085612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.
    Zhang Y; Li P; Zhu X; Su SW; Guo Q; Xu P; Yao D
    PLoS One; 2017; 12(7):e0180526. PubMed ID: 28692691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.