These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38936239)

  • 1. Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events.
    Sultana R; Johnson RH; Tigar AD; Wahl TJ; Meurer CE; Hoss KN; Xu S; Paradis CJ
    J Contam Hydrol; 2024 Jul; 265():104391. PubMed ID: 38936239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field experiments of surface water to groundwater recharge to characterize the mobility of uranium and vanadium at a former mill tailing site.
    Paradis CJ; Johnson RH; Tigar AD; Sauer KB; Marina OC; Reimus PW
    J Contam Hydrol; 2020 Feb; 229():103581. PubMed ID: 31810750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential effects on groundwater quality associated with infiltrating stormwater through dry wells for aquifer recharge.
    Edwards EC; Nelson C; Harter T; Bowles C; Li X; Lock B; Fogg GE; Washburn BS
    J Contam Hydrol; 2022 Apr; 246():103964. PubMed ID: 35180606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.
    Voisin J; Cournoyer B; Vienney A; Mermillod-Blondin F
    Sci Total Environ; 2018 Oct; 637-638():1496-1507. PubMed ID: 29801243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater.
    Paradis CJ; Hoss KN; Meurer CE; Hatami JL; Dangelmayr MA; Tigar AD; Johnson RH
    J Contam Hydrol; 2022 Dec; 251():104076. PubMed ID: 36148719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change impact on residual contaminants under sustainable remediation.
    Libera A; de Barros FPJ; Faybishenko B; Eddy-Dilek C; Denham M; Lipnikov K; Moulton D; Maco B; Wainwright H
    J Contam Hydrol; 2019 Oct; 226():103518. PubMed ID: 31276970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the sources of subsurface contamination at the Hanford Site in Washington using high-precision uranium isotopic measurements.
    Christensen JN; Dresel PE; Conrad ME; Maher K; DePaolo DJ
    Environ Sci Technol; 2004 Jun; 38(12):3330-7. PubMed ID: 15260332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floods enhance the abundance and diversity of anthropogenic microparticles (including microplastics and treated cellulose) transported through karst systems.
    Baraza T; Hasenmueller EA
    Water Res; 2023 Aug; 242():120204. PubMed ID: 37356161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils.
    Ma L; Liu Y; Zhang J; Yang Q; Li G; Zhang D
    Sci Total Environ; 2018 Jun; 626():1148-1156. PubMed ID: 29898521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquifer recharge by stormwater infiltration basins: Hydrological and vadose zone characteristics control the impacts of basins on groundwater chemistry and microbiology.
    Lebon Y; François C; Navel S; Vallier F; Guillard L; Pinasseau L; Oxarango L; Volatier L; Mermillod-Blondin F
    Sci Total Environ; 2023 Mar; 865():161115. PubMed ID: 36581297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.
    Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O
    J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estrogen receptor mediated activity in bankside groundwater, with flood suspended particulate matter and floodplain soil - an approach combining tracer substance, bioassay and target analysis.
    Wölz J; Grosshans K; Streck G; Schulze T; Rastall A; Erdinger L; Brack W; Fleig M; Kühlers D; Braunbeck T; Hollert H
    Chemosphere; 2011 Oct; 85(5):717-23. PubMed ID: 21722939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge.
    Lewis J; Burman J; Edlund C; Simonsson L; Berglind R; Leffler P; Qvarfort U; Thiboutot S; Ampleman G; Meuken D; Duvalois W; Martel R; Sjöström J
    J Contam Hydrol; 2013 Mar; 146():8-15. PubMed ID: 23353636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the impact of vadose zone heterogeneity on agricultural managed aquifer recharge: A combined experimental and modeling study.
    Zhou T; Levintal E; Brunetti G; Jordan S; Harter T; Kisekka I; Šimůnek J; Dahlke HE
    Water Res; 2023 Dec; 247():120781. PubMed ID: 37918200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system.
    Zang Y; Hou X; Li Z; Li P; Sun Y; Yu B; Li M
    Water Res; 2022 Nov; 226():119213. PubMed ID: 36240711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan.
    Khan SN; Yasmeen T; Riaz M; Arif MS; Rizwan M; Ali S; Tariq A; Jessen S
    Environ Pollut; 2019 Oct; 253():384-392. PubMed ID: 31325883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.