These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38936341)

  • 1. ScType enables fast and accurate cell type identification from spatial transcriptomics data.
    Nader K; Tasci M; Ianevski A; Erickson A; Verschuren EW; Aittokallio T; Miihkinen M
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38936341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.
    Miller BF; Huang F; Atta L; Sahoo A; Fan J
    Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data.
    Ianevski A; Giri AK; Aittokallio T
    Nat Commun; 2022 Mar; 13(1):1246. PubMed ID: 35273156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bin2cell reconstructs cells from high resolution Visium HD data.
    Polański K; Bartolomé-Casado R; Sarropoulos I; Xu C; England N; Jahnsen FL; Teichmann SA; Yayon N
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39250728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPRITE: improving spatial gene expression imputation with gene and cell networks.
    Sun ED; Ma R; Zou J
    Bioinformatics; 2024 Jun; 40(Suppl 1):i521-i528. PubMed ID: 38940132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STtools: A Comprehensive Software Pipeline for Ultra-high Resolution Spatial Transcriptomics Data.
    Xi J; Lee JH; Kang HM; Jun G
    Bioinform Adv; 2022; 2(1):. PubMed ID: 36284674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust decomposition of cell type mixtures in spatial transcriptomics.
    Cable DM; Murray E; Zou LS; Goeva A; Macosko EZ; Chen F; Irizarry RA
    Nat Biotechnol; 2022 Apr; 40(4):517-526. PubMed ID: 33603203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data.
    Zhang T; Wu Z; Li L; Ren J; Zhang Z; Wang G
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization.
    Wang L; Liu C; Gao Y; Zhang XH; Liu Z
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37436699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.