These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38936488)
21. Effect of extracellular polymeric substances (EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge. Lin F; Zhu X; Li J; Yu P; Luo Y; Liu M Chemosphere; 2019 Nov; 235():679-689. PubMed ID: 31279118 [TBL] [Abstract][Full Text] [Related]
22. Insight into the improvement of dewatering performance of waste activated sludge and the corresponding mechanism by biochar-activated persulfate oxidation. Guo J; Jia X; Gao Q Sci Total Environ; 2020 Nov; 744():140912. PubMed ID: 32683170 [TBL] [Abstract][Full Text] [Related]
23. [Sludge dewaterability with combined conditioning using Fenton's reagent and CPAM]. Ma JW; Liu JW; Cao R; Yue DB; Wang HT Huan Jing Ke Xue; 2013 Sep; 34(9):3538-43. PubMed ID: 24289002 [TBL] [Abstract][Full Text] [Related]
24. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production. Yu L; Yu Y; Jiang W; Wei H; Sun C Environ Sci Pollut Res Int; 2015 Feb; 22(4):2599-609. PubMed ID: 25192669 [TBL] [Abstract][Full Text] [Related]
25. Applying organic polymer flocculants in conditioning and advanced dewatering of landfill sludge as a substitution of ferric trichloride and lime: Mechanism, optimization and pilot-scale study. Zhao X; Jiang J; Zhou Z; Yang J; Chen G; Wu W; Sun D; Yao J; Qiu Z; He K; Wu Z; Lou Z Chemosphere; 2020 Dec; 260():127617. PubMed ID: 32683031 [TBL] [Abstract][Full Text] [Related]
26. Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants. Wang S; Ma C; Zhu Y; Yang Y; Du G; Li J Environ Sci Pollut Res Int; 2019 Nov; 26(33):33838-33846. PubMed ID: 29905896 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of alkaline pretreatment-anaerobically digested sludge dewaterability by chitosan and rice husk powder for land use of biogas slurry. Wang T; Xu Z; Shi H; Zhao Y; Gao W; Xu Y; Zhang Q J Environ Manage; 2024 Oct; 369():122356. PubMed ID: 39217906 [TBL] [Abstract][Full Text] [Related]
28. A systematic investigation of peracetic acid oxidation and polymeric coagulants re-flocculation to enhance activated sludge dewatering: Multi-porous skeleton structures. Zhang Z; Liu C; Ouyang B; Fu ML; Xu L; Lan H; Yuan B J Environ Manage; 2024 Sep; 367():121946. PubMed ID: 39079495 [TBL] [Abstract][Full Text] [Related]
29. The effect of divalent cation complexation on anaerobically digested enhanced biological phosphorus removal sludge dewatering performance. Mangrum CRL; Jenkins D Water Environ Res; 2020 May; 92(5):677-688. PubMed ID: 31633854 [TBL] [Abstract][Full Text] [Related]
30. Synthesis, characterization and evaluation of dewatering properties of chitosan-grafting DMDAAC flocculants. Wang D; Zhao T; Yan L; Mi Z; Gu Q; Zhang Y Int J Biol Macromol; 2016 Nov; 92():761-768. PubMed ID: 27471087 [TBL] [Abstract][Full Text] [Related]
31. Effect of dewatering conditioners on phosphorus removal efficiency of sludge biochar. Deng P; Liu C; Wang M; Lan G; Zhong Y; Wu Y; Fu C; Shi H; Zhu R; Zhou L Environ Technol; 2023 Aug; 44(20):3131-3139. PubMed ID: 35266861 [TBL] [Abstract][Full Text] [Related]
32. Multiple environmental risk assessments of heavy metals and optimization of sludge dewatering: Red mud-reed straw biochar combined with Fe Li H; Chen J; Zhang J; Dai T; Yi H; Chen F; Zhou M; Hou H J Environ Manage; 2022 Aug; 316():115210. PubMed ID: 35550958 [TBL] [Abstract][Full Text] [Related]
33. Performance of electro-osmotic dewatering on different types of sewage sludge. Visigalli S; Turolla A; Gronchi P; Canziani R Environ Res; 2017 Aug; 157():30-36. PubMed ID: 28511078 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the effects of the preoxidation of H Wei H; Tang Y; Shoeib T; Li A; Yang H Chemosphere; 2019 Nov; 234():942-952. PubMed ID: 31519103 [TBL] [Abstract][Full Text] [Related]
35. Enhancing faecal sludge dewaterability and end-use by conditioning with sawdust and charcoal dust. Semiyaga S; Okure MAE; Niwagaba CB; Nyenje PM; Kansiime F Environ Technol; 2018 Feb; 39(3):327-335. PubMed ID: 28278090 [TBL] [Abstract][Full Text] [Related]
36. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis. Citeau M; Olivier J; Mahmoud A; Vaxelaire J; Larue O; Vorobiev E Water Res; 2012 Sep; 46(14):4405-16. PubMed ID: 22748325 [TBL] [Abstract][Full Text] [Related]
37. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water. Yang Y; Zhao YQ; Babatunde AO; Kearney P Water Environ Res; 2007 Dec; 79(13):2468-76. PubMed ID: 18198692 [TBL] [Abstract][Full Text] [Related]
38. Biochar derived from alkali-treated sludge residue regulates anaerobic digestion: Enhancement performance and potential mechanisms. Hu W; Jin HY; Gao XY; Tang CC; Zhou AJ; Liu W; Ren YX; Li Z; He ZW Environ Res; 2024 Jun; 251(Pt 1):118578. PubMed ID: 38423498 [TBL] [Abstract][Full Text] [Related]
39. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: Effect of operating conditions. Cao B; Zhang W; Du Y; Wang R; Usher SP; Scales PJ; Wang D Water Res; 2018 Mar; 130():363-375. PubMed ID: 29253807 [TBL] [Abstract][Full Text] [Related]
40. Effects of voltage and pressure on sludge electro-dewatering process and the dewatering mechanisms investigation. Zhang Q; Cui G; He X; Wang Z; Tang T; Zhao Q; Liu Y Environ Res; 2022 Sep; 212(Pt D):113490. PubMed ID: 35594958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]