BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38936518)

  • 41. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disruption of cellular iron homeostasis by
    Maio N; Saneto RP; Steet R; Sotero de Menezes MA; Skinner C; Rouault TA
    Brain Commun; 2022; 4(3):fcac102. PubMed ID: 35602653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondrial ferritin suppresses MPTP-induced cell damage by regulating iron metabolism and attenuating oxidative stress.
    You LH; Li Z; Duan XL; Zhao BL; Chang YZ; Shi ZH
    Brain Res; 2016 Jul; 1642():33-42. PubMed ID: 27017962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD.
    Zuo Y; Xie J; Li X; Li Y; Thirupathi A; Zhang J; Yu P; Gao G; Chang Y; Shi Z
    Oxid Med Cell Longev; 2021; 2021():9961628. PubMed ID: 34394837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins.
    Kanagaraj N; Beiping H; Dheen ST; Tay SS
    Neuroscience; 2014 Jul; 272():167-79. PubMed ID: 24792712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease in mice.
    Liu H; Wu H; Zhu N; Xu Z; Wang Y; Qu Y; Wang J
    J Neurochem; 2020 Feb; 152(3):397-415. PubMed ID: 31442326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurotrophic Role of the Next-Generation Probiotic Strain
    Yue M; Wei J; Chen W; Hong D; Chen T; Fang X
    Nutrients; 2022 Nov; 14(22):. PubMed ID: 36432569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple, conserved iron-responsive elements in the 3'-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2.
    Erlitzki R; Long JC; Theil EC
    J Biol Chem; 2002 Nov; 277(45):42579-87. PubMed ID: 12200453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The IRP/IRE system in vivo: insights from mouse models.
    Wilkinson N; Pantopoulos K
    Front Pharmacol; 2014; 5():176. PubMed ID: 25120486
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway.
    Chu B; Kon N; Chen D; Li T; Liu T; Jiang L; Song S; Tavana O; Gu W
    Nat Cell Biol; 2019 May; 21(5):579-591. PubMed ID: 30962574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemically Induced Models of Parkinson's Disease: History and Perspectives for the Involvement of Ferroptosis.
    Wen S; Aki T; Unuma K; Uemura K
    Front Cell Neurosci; 2020; 14():581191. PubMed ID: 33424553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron transport in Parkinson's disease.
    Hirsch EC
    Parkinsonism Relat Disord; 2009 Dec; 15 Suppl 3():S209-11. PubMed ID: 20082992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson's disease.
    You LH; Li F; Wang L; Zhao SE; Wang SM; Zhang LL; Zhang LH; Duan XL; Yu P; Chang YZ
    Neuroscience; 2015 Jan; 284():234-246. PubMed ID: 25301748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease.
    Zhang P; Chen L; Zhao Q; Du X; Bi M; Li Y; Jiao Q; Jiang H
    Free Radic Biol Med; 2020 May; 152():227-234. PubMed ID: 32217194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment.
    Maniscalchi A; Benzi Juncos ON; Conde MA; Funk MI; Fermento ME; Facchinetti MM; Curino AC; Uranga RM; Alza NP; Salvador GA
    Redox Biol; 2024 May; 71():103074. PubMed ID: 38367511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excess capacity of the iron regulatory protein system.
    Wang W; Di X; D'Agostino RB; Torti SV; Torti FM
    J Biol Chem; 2007 Aug; 282(34):24650-9. PubMed ID: 17604281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.
    Jeong SY; Crooks DR; Wilson-Ollivierre H; Ghosh MC; Sougrat R; Lee J; Cooperman S; Mitchell JB; Beaumont C; Rouault TA
    PLoS One; 2011; 6(10):e25404. PubMed ID: 22003390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease.
    Mahoney-Sánchez L; Bouchaoui H; Ayton S; Devos D; Duce JA; Devedjian JC
    Prog Neurobiol; 2021 Jan; 196():101890. PubMed ID: 32726602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of SLC7A11-GPX4 signal pathway is involved in aconitine-induced ferroptosis in vivo and in vitro.
    Li Q; Peng F; Yan X; Chen Y; Zhou J; Wu S; Jiang W; Jin X; Liang J; Peng C; Pan X
    J Ethnopharmacol; 2023 Mar; 303():116029. PubMed ID: 36503029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ganoderic acid A mitigates dopaminergic neuron ferroptosis via inhibiting NCOA4-mediated ferritinophagy in Parkinson's disease mice.
    Li QM; Wu SZ; Zha XQ; Zang DD; Zhang FY; Luo JP
    J Ethnopharmacol; 2024 Oct; 332():118363. PubMed ID: 38763373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.