BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38936727)

  • 1. Sulfidation of Cd-Sch during the microbial sulfate reduction: Nanoscale redistribution of Cd.
    Deng Y; Ke C; Ren M; Xu Z; Zhang S; Dang Z; Guo C
    Sci Total Environ; 2024 Jun; 946():174275. PubMed ID: 38936727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial reduction of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Guo C; Zhang S; Deng Y; Li X; Li Y; Lu G; Ling F; Dang Z
    Sci Total Environ; 2023 Feb; 861():160551. PubMed ID: 36460112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Deng Y; Zhang S; Ren M; Liu B; He J; Wu R; Dang Z; Guo C
    Sci Total Environ; 2024 Jan; 906():167690. PubMed ID: 37820819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors.
    Fan C; Guo C; Chen M; Huang W; Wan J; Reinfelder JR; Li X; Zeng Y; Lu G; Dang Z
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):617-627. PubMed ID: 30411291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms.
    Xie Y; Ye H; Wen Z; Dang Z; Lu G
    Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of Cd during mineral transformation by sulfate-reducing bacteria in clay-size fractions from soils with high geochemical background.
    Yan X; Guan DX; Li J; Song Y; Tao H; Zhang X; Ma M; Ji J; Zhao W
    J Hazard Mater; 2023 Oct; 459():132213. PubMed ID: 37549581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The symbiotic system of sulfate-reducing bacteria and clay-sized fraction of purplish soil strengthens cadmium fixation through iron-bearing minerals.
    Li J; Zhao W; Du H; Guan Y; Ma M; Rennenberg H
    Sci Total Environ; 2022 May; 820():153253. PubMed ID: 35065114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.
    Zhou C; Vannela R; Hayes KF; Rittmann BE
    J Hazard Mater; 2014 May; 272():28-35. PubMed ID: 24675611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei.
    Zhang Y; Gao K; Dang Z; Huang W; Reinfelder JR; Ren Y
    Sci Total Environ; 2021 Apr; 764():144279. PubMed ID: 33401041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of Mn(II) on transformation of Cr-absorbed Schwertmannite: Mineral phase transition and elemental fate.
    Tang H; Chen M; Wu P; Li Y; Wang T; Wu J; Sun L; Shang Z
    Water Res; 2024 Jun; 257():121656. PubMed ID: 38677110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cadmium immobilization by sulfate-mediated microbial zero-valent iron corrosion.
    Yan M; Li W; Zhao J; Yin W; Li P; Fang Z; Liu L; Wu J
    J Environ Manage; 2022 Jan; 301():113894. PubMed ID: 34638045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation.
    Bu H; Lei Q; Tong H; Liu C; Hu S; Xu W; Wang Y; Chen M; Qiao J
    Sci Total Environ; 2023 Feb; 861():160624. PubMed ID: 36460100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.
    Muehe EM; Adaktylou IJ; Obst M; Zeitvogel F; Behrens S; Planer-Friedrich B; Kraemer U; Kappler A
    Environ Sci Technol; 2013; 47(23):13430-9. PubMed ID: 24191747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions.
    Zhao X; Yuan Z; Wang S; Pan Y; Chen N; Tunc A; Cheung K; Alparov A; Chen W; Deevsalar R; Lin J; Jia Y
    Sci Total Environ; 2022 Nov; 848():157719. PubMed ID: 35914597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.