These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38936930)
1. Enhancing the Contouring Efficiency for Head and Neck Cancer Radiotherapy Using Atlas-based Auto-segmentation and Scripting. Nagayasu Y; Ohira S; Ikawa T; Masaoka A; Kanayama N; Nishi T; Kazunori T; Yoshino Y; Miyazaki M; Ueda Y; Konishi K In Vivo; 2024; 38(4):1712-1718. PubMed ID: 38936930 [TBL] [Abstract][Full Text] [Related]
2. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573 [TBL] [Abstract][Full Text] [Related]
3. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425 [TBL] [Abstract][Full Text] [Related]
4. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Kieselmann JP; Kamerling CP; Burgos N; Menten MJ; Fuller CD; Nill S; Cardoso MJ; Oelfke U Phys Med Biol; 2018 Jul; 63(14):145007. PubMed ID: 29882749 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers. Rayn K; Gupta V; Mulinti S; Clark R; Magliari A; Chaudhari S; Garima G; Beriwal S J Cancer Res Ther; 2024 Apr; 20(3):1020-1025. PubMed ID: 39023610 [TBL] [Abstract][Full Text] [Related]
6. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
7. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953 [TBL] [Abstract][Full Text] [Related]
8. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Kim N; Chang JS; Kim YB; Kim JS Radiat Oncol; 2020 May; 15(1):106. PubMed ID: 32404123 [TBL] [Abstract][Full Text] [Related]
9. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis. Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672 [TBL] [Abstract][Full Text] [Related]
10. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
12. Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck. Lim JY; Leech M Acta Oncol; 2016 Jul; 55(7):799-806. PubMed ID: 27248772 [TBL] [Abstract][Full Text] [Related]
13. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664 [TBL] [Abstract][Full Text] [Related]
14. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer. Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457 [No Abstract] [Full Text] [Related]
16. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk. Thomson D; Boylan C; Liptrot T; Aitkenhead A; Lee L; Yap B; Sykes A; Rowbottom C; Slevin N Radiat Oncol; 2014 Aug; 9():173. PubMed ID: 25086641 [TBL] [Abstract][Full Text] [Related]
17. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system. Costea M; Zlate A; Durand M; Baudier T; Grégoire V; Sarrut D; Biston MC Radiother Oncol; 2022 Dec; 177():61-70. PubMed ID: 36328093 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Chen W; Wang C; Zhan W; Jia Y; Ruan F; Qiu L; Yang S; Li Y Sci Rep; 2021 Nov; 11(1):23002. PubMed ID: 34836989 [TBL] [Abstract][Full Text] [Related]
19. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389 [TBL] [Abstract][Full Text] [Related]
20. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]