These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38936930)
21. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis. Liu P; Sun Y; Zhao X; Yan Y Biomed Eng Online; 2023 Nov; 22(1):104. PubMed ID: 37915046 [TBL] [Abstract][Full Text] [Related]
22. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation. Yamauchi R; Itazawa T; Kobayashi T; Kashiyama S; Akimoto H; Mizuno N; Kawamori J Med Dosim; 2024 Autumn; 49(3):167-176. PubMed ID: 38061916 [TBL] [Abstract][Full Text] [Related]
24. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. La Macchia M; Fellin F; Amichetti M; Cianchetti M; Gianolini S; Paola V; Lomax AJ; Widesott L Radiat Oncol; 2012 Sep; 7():160. PubMed ID: 22989046 [TBL] [Abstract][Full Text] [Related]
25. Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients. Temple SWP; Rowbottom CG J Appl Clin Med Phys; 2024 Jun; 25(6):e14273. PubMed ID: 38263866 [TBL] [Abstract][Full Text] [Related]
26. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning. Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy. Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569 [TBL] [Abstract][Full Text] [Related]
28. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Savenije MHF; Maspero M; Sikkes GG; van der Voort van Zyp JRN; T J Kotte AN; Bol GH; T van den Berg CA Radiat Oncol; 2020 May; 15(1):104. PubMed ID: 32393280 [TBL] [Abstract][Full Text] [Related]
29. Automatic image segmentation based on synthetic tissue model for delineating organs at risk in spinal metastasis treatment planning. Wittenstein O; Hiepe P; Sowa LH; Karsten E; Fandrich I; Dunst J Strahlenther Onkol; 2019 Dec; 195(12):1094-1103. PubMed ID: 31037351 [TBL] [Abstract][Full Text] [Related]
30. Is accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans? Delaney AR; Dahele M; Slotman BJ; Verbakel WFAR Radiother Oncol; 2018 May; 127(2):190-196. PubMed ID: 29605479 [TBL] [Abstract][Full Text] [Related]
31. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
32. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy. Yang J; Beadle BM; Garden AS; Gunn B; Rosenthal D; Ang K; Frank S; Williamson R; Balter P; Court L; Dong L Pract Radiat Oncol; 2014; 4(1):e31-7. PubMed ID: 24621429 [TBL] [Abstract][Full Text] [Related]
33. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Vrtovec T; Močnik D; Strojan P; Pernuš F; Ibragimov B Med Phys; 2020 Sep; 47(9):e929-e950. PubMed ID: 32510603 [TBL] [Abstract][Full Text] [Related]
34. Head and neck multi-organ auto-segmentation on CT images aided by synthetic MRI. Liu Y; Lei Y; Fu Y; Wang T; Zhou J; Jiang X; McDonald M; Beitler JJ; Curran WJ; Liu T; Yang X Med Phys; 2020 Sep; 47(9):4294-4302. PubMed ID: 32648602 [TBL] [Abstract][Full Text] [Related]
35. A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Chen X; Sun S; Bai N; Han K; Liu Q; Yao S; Tang H; Zhang C; Lu Z; Huang Q; Zhao G; Xu Y; Chen T; Xie X; Liu Y Radiother Oncol; 2021 Jul; 160():175-184. PubMed ID: 33961914 [TBL] [Abstract][Full Text] [Related]
36. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy. Li X; Zhang Y; Shi Y; Wu S; Xiao Y; Gu X; Zhen X; Zhou L PLoS One; 2017; 12(4):e0175906. PubMed ID: 28414799 [TBL] [Abstract][Full Text] [Related]
37. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy. Hvid CA; Elstrøm UV; Jensen K; Alber M; Grau C Acta Oncol; 2016 Nov; 55(11):1324-1330. PubMed ID: 27556786 [TBL] [Abstract][Full Text] [Related]
38. Landmark-based auto-contouring of clinical target volumes for radiotherapy of nasopharyngeal cancer. Sjogreen C; Netherton TJ; Lee A; Soliman M; Gay SS; Nguyen C; Mumme R; Vazquez I; Rhee DJ; Cardenas CE; Martel MK; Beadle BM; Court LE J Appl Clin Med Phys; 2024 Sep; 25(9):e14474. PubMed ID: 39074490 [TBL] [Abstract][Full Text] [Related]
39. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062 [TBL] [Abstract][Full Text] [Related]
40. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images. Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]