These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38937253)

  • 1. Investigating the Emulsifying Mechanism of Stereoisomeric Sugar Fatty Acyl Molecular Gelators.
    Sagiri SS; Samateh M; John G
    Langmuir; 2024 Jul; 40(27):13763-13772. PubMed ID: 38937253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Aesthetic and Mechanical Properties of Oleogels via Formulation of Enzyme-Enabled Stereoisomeric Molecular Gelators.
    Samateh M; Sagiri SS; Sanni R; Chee CA; Satapathy S; John G
    J Agric Food Chem; 2020 Nov; 68(46):13282-13290. PubMed ID: 32991807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of natural wax-based W/O emulsion gels: Microstructure and macroscopic properties.
    Gu X; Du L; Meng Z
    Food Res Int; 2023 Mar; 165():112509. PubMed ID: 36869516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Heat Transfer Model and Supporting Experiments to Guide the Uniform Gelation of Molecular Oleogels During Scale-up.
    Sagiri SS; Samateh M; Pan S; Maldarelli C; John G
    J Am Oil Chem Soc; 2023 Jul; 100(7):539-550. PubMed ID: 37720415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical characterization of high methoxyl pectin and sunflower oil wax emulsions: A low-field
    Akkaya S; Ozel B; Oztop MH; Yanik DK; Gogus F
    J Food Sci; 2021 Jan; 86(1):120-128. PubMed ID: 33336400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. l-Lysine-Based Gelators for the Formation of Oleogels in Four Vegetable Oils.
    Li Q; Zhang J; Zhang G; Xu B
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Sorbitan Monostearate and Stearyl Alcohol on the Physicochemical Parameters of Sunflower-Wax-Based Oleogels.
    Bharti D; Kim D; Banerjee I; Rousseau D; Pal K
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release of hydrophobic drugs by oleogel rods with biocompatible gelators.
    Macoon R; Robey M; Chauhan A
    Eur J Pharm Sci; 2020 Sep; 152():105413. PubMed ID: 32535213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled Trehalose Amphiphiles as Molecular Gels: A Unique Formulation to Wax-free Cosmetics.
    Tsupko P; Sagiri SS; Samateh M; Satapathy S; John G
    J Surfactants Deterg; 2023 May; 26(3):369-385. PubMed ID: 37252108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beeswax: A potential self-emulsifying agent for the construction of thermal-sensitive food W/O emulsion.
    Gao Y; Lei Y; Wu Y; Liang H; Li J; Pei Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129203. PubMed ID: 33581433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil.
    Bharti D; Kim D; Cerqueira MA; Mohanty B; Habibullah SK; Banerjee I; Pal K
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oleogel-based emulsions: Concepts, structuring agents, and applications in food.
    Silva TJ; Barrera-Arellano D; Ribeiro APB
    J Food Sci; 2021 Jul; 86(7):2785-2801. PubMed ID: 34160057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.
    Hou JJ; Guo J; Wang JM; Yang XQ
    J Sci Food Agric; 2016 Oct; 96(13):4449-56. PubMed ID: 26841309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microstructural Study of the O/W Primary Emulsion on the Formation of Oil-in-Water-in-Oil Multiple Emulsion.
    Zhang Q; Qin Y; Duan G; Ou W; Wang Y; Zhang W
    Curr Drug Deliv; 2021; 18(7):994-1002. PubMed ID: 33388020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of oleogels and temperature-responsive water-in-oil emulsions based on candelilla (Euphorbia cerifera) wax.
    Hong X; Zhao Q; Chen J; Ye T; Fan L; Li J
    Food Chem; 2022 Dec; 397():133677. PubMed ID: 35907389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physicochemical properties and stability of myofibrillar protein oil-in-water emulsions as affected by the structure of sugar.
    Wang K; Li Y; Sun J; Zhang Y
    Food Chem X; 2023 Jun; 18():100677. PubMed ID: 37077582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boronic Acid Linear Homopolymers as Effective Emulsifiers and Gelators.
    Chen Q; Hill MR; Brooks WL; Zhu A; Sumerlin BS; An Z
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21668-72. PubMed ID: 26402568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study.
    Pocan P; Ilhan E; Oztop MH
    J Food Sci; 2019 May; 84(5):1087-1093. PubMed ID: 30958906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-in-water emulsions stabilized by sodium phosphorylated chitosan.
    Chongprakobkit S; Maniratanachote R; Tachaboonyakiat W
    Carbohydr Polym; 2013 Jul; 96(1):82-90. PubMed ID: 23688457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.