These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38937388)
1. Prediction of prognosis in patients with systemic sclerosis based on a machine-learning model. Zheng Y; Jin W; Zheng Z; Zhang K; Jia J; Lei C; Wang W; Zhu P Clin Rheumatol; 2024 Aug; 43(8):2573-2584. PubMed ID: 38937388 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of machine learning for early mortality in systemic sclerosis. Foocharoen C; Thinkhamrop W; Chaichaya N; Mahakkanukrauh A; Suwannaroj S; Thinkhamrop B Sci Rep; 2022 Oct; 12(1):17178. PubMed ID: 36229500 [TBL] [Abstract][Full Text] [Related]
3. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China. Wang M; Li Z; Zeng S; Wang Z; Ying Y; He W; Zhang Z; Wang H; Xu C Cancer Med; 2024 Jun; 13(11):e7324. PubMed ID: 38847519 [TBL] [Abstract][Full Text] [Related]
4. Prognostic profile of systemic sclerosis: analysis of the clinical EUSTAR cohort in China. Hu S; Hou Y; Wang Q; Li M; Xu D; Zeng X Arthritis Res Ther; 2018 Oct; 20(1):235. PubMed ID: 30348207 [TBL] [Abstract][Full Text] [Related]
5. A novel higher performance nomogram based on explainable machine learning for predicting mortality risk in stroke patients within 30 days based on clinical features on the first day ICU admission. Chen H; Yang F; Duan Y; Yang L; Li J BMC Med Inform Decis Mak; 2024 Jun; 24(1):161. PubMed ID: 38849903 [TBL] [Abstract][Full Text] [Related]
6. Two machine learning methods identify a metastasis-related prognostic model that predicts overall survival in medulloblastoma patients. Chen K; Huang B; Yan S; Xu S; Li K; Zhang K; Wang Q; Zhuang Z; Wei L; Zhang Y; Liu M; Lian H; Zhong C Aging (Albany NY); 2020 Nov; 12(21):21481-21503. PubMed ID: 33159021 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
8. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
9. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504 [TBL] [Abstract][Full Text] [Related]
10. A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters. Chen H; Li C; Zheng L; Lu W; Li Y; Wei Q Cancer Med; 2021 Apr; 10(8):2774-2786. PubMed ID: 33760360 [TBL] [Abstract][Full Text] [Related]
11. High-throughput quantitative histology in systemic sclerosis skin disease using computer vision. Correia C; Mawe S; Lofgren S; Marangoni RG; Lee J; Saber R; Aren K; Cheng M; Teaw S; Hoffmann A; Goldberg I; Cowper SE; Khatri P; Hinchcliff M; Mahoney JM Arthritis Res Ther; 2020 Mar; 22(1):48. PubMed ID: 32171325 [TBL] [Abstract][Full Text] [Related]
12. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest. Yang Y; Ma X; Wang Y; Ding X Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of an inflammatory biomarkers model to predict gastric cancer prognosis: a multi-center cohort study in China. Zhang S; Xu H; Li W; Cui J; Zhao Q; Guo Z; Chen J; Yao Q; Li S; He Y; Qiao Q; Feng Y; Shi H; Song C BMC Cancer; 2024 Jun; 24(1):711. PubMed ID: 38858653 [TBL] [Abstract][Full Text] [Related]
14. Unique predictors of mortality in patients with pulmonary arterial hypertension associated with systemic sclerosis in the REVEAL registry. Chung L; Farber HW; Benza R; Miller DP; Parsons L; Hassoun PM; McGoon M; Nicolls MR; Zamanian RT Chest; 2014 Dec; 146(6):1494-1504. PubMed ID: 24992469 [TBL] [Abstract][Full Text] [Related]
15. Mapping and predicting mortality from systemic sclerosis. Elhai M; Meune C; Boubaya M; Avouac J; Hachulla E; Balbir-Gurman A; Riemekasten G; Airò P; Joven B; Vettori S; Cozzi F; Ullman S; Czirják L; Tikly M; Müller-Ladner U; Caramaschi P; Distler O; Iannone F; Ananieva LP; Hesselstrand R; Becvar R; Gabrielli A; Damjanov N; Salvador MJ; Riccieri V; Mihai C; Szücs G; Walker UA; Hunzelmann N; Martinovic D; Smith V; Müller CS; Montecucco CM; Opris D; Ingegnoli F; Vlachoyiannopoulos PG; Stamenkovic B; Rosato E; Heitmann S; Distler JHW; Zenone T; Seidel M; Vacca A; Langhe E; Novak S; Cutolo M; Mouthon L; Henes J; Chizzolini C; Mühlen CAV; Solanki K; Rednic S; Stamp L; Anic B; Santamaria VO; De Santis M; Yavuz S; Sifuentes-Giraldo WA; Chatelus E; Stork J; Laar JV; Loyo E; García de la Peña Lefebvre P; Eyerich K; Cosentino V; Alegre-Sancho JJ; Kowal-Bielecka O; Rey G; Matucci-Cerinic M; Allanore Y; Ann Rheum Dis; 2017 Nov; 76(11):1897-1905. PubMed ID: 28835464 [TBL] [Abstract][Full Text] [Related]
16. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
17. Prognostic factors of mortality and 2-year survival analysis of systemic sclerosis with pulmonary arterial hypertension in Thailand. Foocharoen C; Nanagara R; Kiatchoosakun S; Suwannaroj S; Mahakkanukrauh A Int J Rheum Dis; 2011 Aug; 14(3):282-9. PubMed ID: 21816025 [TBL] [Abstract][Full Text] [Related]
18. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
20. Prognosis and risk factor assessment of patients with advanced lung cancer with low socioeconomic status: model development and validation. Cui J; An Z; Zhou X; Zhang X; Xu Y; Lu Y; Yu L BMC Cancer; 2024 Sep; 24(1):1128. PubMed ID: 39256698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]