These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38937468)

  • 41. CHARMM-GUI
    Feng S; Park S; Choi YK; Im W
    J Chem Theory Comput; 2023 Apr; 19(8):2161-2185. PubMed ID: 37014931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding Interfacial Nanoparticle Organization through Simulation and Theory: A Review.
    Gao L; Xu D; Wan H; Zhang X; Dai X; Yan LT
    Langmuir; 2022 Sep; 38(37):11137-11148. PubMed ID: 36070512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.
    Hsu PJ; Lai SK; Rapallo A
    J Chem Phys; 2014 Mar; 140(10):104910. PubMed ID: 24628208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein Nano-Object Integrator (ProNOI) for generating atomic style objects for molecular modeling.
    Smith N; Campbell B; Li L; Li C; Alexov E
    BMC Struct Biol; 2012 Dec; 12():31. PubMed ID: 23217202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.
    Kim S; Lee J; Jo S; Brooks CL; Lee HS; Im W
    J Comput Chem; 2017 Jun; 38(21):1879-1886. PubMed ID: 28497616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing Structure Prediction and Design of Soluble and Membrane Proteins with Explicit Solvent-Protein Interactions.
    Lai JK; Ambia J; Wang Y; Barth P
    Structure; 2017 Nov; 25(11):1758-1770.e8. PubMed ID: 28966016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.
    Kim T; Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2017; 1632():33-64. PubMed ID: 28730431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides.
    Hsu PC; Bruininks BMH; Jefferies D; Cesar Telles de Souza P; Lee J; Patel DS; Marrink SJ; Qi Y; Khalid S; Im W
    J Comput Chem; 2017 Oct; 38(27):2354-2363. PubMed ID: 28776689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation.
    Wolf MG; Hoefling M; Aponte-Santamaría C; Grubmüller H; Groenhof G
    J Comput Chem; 2010 Aug; 31(11):2169-74. PubMed ID: 20336801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvent-shift Monte Carlo: a cluster algorithm for solvated systems.
    Hixson CA; Benigni JP; Earl DJ
    Phys Chem Chem Phys; 2009 Aug; 11(30):6335-8. PubMed ID: 19809663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation.
    Ford AS; Weitzner BD; Bahl CD
    Protein Sci; 2020 Jan; 29(1):43-51. PubMed ID: 31495995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates.
    Park SJ; Lee J; Qi Y; Kern NR; Lee HS; Jo S; Joung I; Joo K; Lee J; Im W
    Glycobiology; 2019 Apr; 29(4):320-331. PubMed ID: 30689864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CHARMM-GUI PACE CG Builder for solution, micelle, and bilayer coarse-grained simulations.
    Qi Y; Cheng X; Han W; Jo S; Schulten K; Im W
    J Chem Inf Model; 2014 Mar; 54(3):1003-9. PubMed ID: 24624945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Versatile computer-aided design of free-form DNA nanostructures and assemblies.
    Pfeifer WG; Huang CM; Poirier MG; Arya G; Castro CE
    Sci Adv; 2023 Jul; 9(30):eadi0697. PubMed ID: 37494445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer.
    Komeiji Y; Yokoyama H; Uebayasi M; Taiji M; Fukushige T; Sugimoto D; Takata R; Shimizu A; Itsukashi K
    Pac Symp Biocomput; 1996; ():472-87. PubMed ID: 9390252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Model-driven optimization of multicomponent self-assembly processes.
    Korevaar PA; Grenier C; Markvoort AJ; Schenning AP; de Greef TF; Meijer EW
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17205-10. PubMed ID: 24101463
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The solvated interaction energy method for scoring binding affinities.
    Sulea T; Purisima EO
    Methods Mol Biol; 2012; 819():295-303. PubMed ID: 22183544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials.
    Grünewald F; Alessandri R; Kroon PC; Monticelli L; Souza PCT; Marrink SJ
    Nat Commun; 2022 Jan; 13(1):68. PubMed ID: 35013176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
    Lee J; Cheng X; Swails JM; Yeom MS; Eastman PK; Lemkul JA; Wei S; Buckner J; Jeong JC; Qi Y; Jo S; Pande VS; Case DA; Brooks CL; MacKerell AD; Klauda JB; Im W
    J Chem Theory Comput; 2016 Jan; 12(1):405-13. PubMed ID: 26631602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.