These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38937586)

  • 1. Molecular transport enhancement in pure metallic carbon nanotube porins.
    Li Y; Li Z; Misra RP; Liang C; Gillen AJ; Zhao S; Abdullah J; Laurence T; Fagan JA; Aluru N; Blankschtein D; Noy A
    Nat Mater; 2024 Aug; 23(8):1123-1130. PubMed ID: 38937586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins.
    Tunuguntla RH; Allen FI; Kim K; Belliveau A; Noy A
    Nat Nanotechnol; 2016 Jul; 11(7):639-44. PubMed ID: 27043198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
    Yao YC; Li Z; Gillen AJ; Yosinski S; Reed MA; Noy A
    J Chem Phys; 2021 May; 154(20):204704. PubMed ID: 34241182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion exclusion by sub-2-nm carbon nanotube pores.
    Fornasiero F; Park HG; Holt JK; Stadermann M; Grigoropoulos CP; Noy A; Bakajin O
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17250-5. PubMed ID: 18539773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water flow inside various geometric nano-confinement channels.
    Xu X; Zhao Y; Wang J; Zhang N; Wang C; Zhang J; Wei N
    Phys Chem Chem Phys; 2020 Nov; 22(42):24633-24639. PubMed ID: 33095223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins.
    Li Z; Li Y; Yao YC; Aydin F; Zhan C; Chen Y; Elimelech M; Pham TA; Noy A
    ACS Nano; 2020 May; 14(5):6269-6275. PubMed ID: 32347708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of PEG additives and pore rim functionalization on water transport through sub-1 nm carbon nanotube porins.
    Tunuguntla RH; Hu AY; Zhang Y; Noy A
    Faraday Discuss; 2018 Sep; 209(0):359-369. PubMed ID: 29987303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanotubes-Based Nanofluidic Devices: Fabrication, Property and Application.
    Zhou H; Li W; Yu P
    ChemistryOpen; 2022 Nov; 11(11):e202200126. PubMed ID: 36351756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Tunuguntla RH; Zhang Y; Henley RY; Yao YC; Pham TA; Wanunu M; Noy A
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Nano Lett; 2010 Oct; 10(10):4067-73. PubMed ID: 20845964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes.
    Topinka MA; Rowell MW; Goldhaber-Gordon D; McGehee MD; Hecht DS; Gruner G
    Nano Lett; 2009 May; 9(5):1866-71. PubMed ID: 19331424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniqueness of Nanoscale Confinement for Fast Water Transport: Effect of Nanotube Diameter and Hydrophobicity.
    Sahu P; Ali SM
    J Phys Chem B; 2024 Jan; 128(1):222-243. PubMed ID: 38149848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube screening effects on the water-ion channels.
    Xu Y; Aluru NR
    Appl Phys Lett; 2008 Jul; 93(4):43122. PubMed ID: 19529785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations.
    Sahu P; Musharaf Ali S; Shenoy KT; Mohan S
    Phys Chem Chem Phys; 2019 Apr; 21(16):8529-8542. PubMed ID: 30957831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction confinement and electronic screening in two-dimensional nanofluidic channels.
    Kavokine N; Robin P; Bocquet L
    J Chem Phys; 2022 Sep; 157(11):114703. PubMed ID: 36137776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel.
    Zuo G; Shen R; Ma S; Guo W
    ACS Nano; 2010 Jan; 4(1):205-10. PubMed ID: 20000381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.