These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38937883)
1. Automated Skeleton Network Generation for ReaxFF Molecular Dynamics Simulations of Hydrocarbon Fuel Pyrolysis and Oxidation via a Rate-Based Algorithm. Xiao Y; Zheng M; Li X; Ren C J Chem Theory Comput; 2024 Jul; 20(13):5539-5557. PubMed ID: 38937883 [TBL] [Abstract][Full Text] [Related]
2. Generating a skeleton reaction network for reactions of large-scale ReaxFF MD pyrolysis simulations based on a machine learning predicted reaction class. Yang S; Li X; Zheng M; Ren C; Guo L Phys Chem Chem Phys; 2024 Feb; 26(6):5649-5668. PubMed ID: 38288590 [TBL] [Abstract][Full Text] [Related]
3. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. Ashraf C; van Duin AC J Phys Chem A; 2017 Feb; 121(5):1051-1068. PubMed ID: 28072539 [TBL] [Abstract][Full Text] [Related]
4. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Chenoweth K; van Duin AC; Dasgupta S; Goddard WA J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880 [TBL] [Abstract][Full Text] [Related]
5. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439 [TBL] [Abstract][Full Text] [Related]
6. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. Cheng XM; Wang QD; Li JQ; Wang JB; Li XY J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396 [TBL] [Abstract][Full Text] [Related]
7. High-Temperature Pyrolysis of Yu X; Zhang C; Wang H; Li Y; Kang Y; Yang K ACS Omega; 2023 Jun; 8(23):20823-20833. PubMed ID: 37332798 [TBL] [Abstract][Full Text] [Related]
8. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Chenoweth K; van Duin AC; Goddard WA J Phys Chem A; 2008 Feb; 112(5):1040-53. PubMed ID: 18197648 [TBL] [Abstract][Full Text] [Related]
9. Development of Chemical Kinetics Models from Atomistic Reactive Molecular Dynamics Simulations: Application to Iso-octane Combustion and Rubber Ablative Degradation. Sasikumar K; Ranganathan R; Rokkam S; Desai T; Burnes R; Cross P J Phys Chem A; 2022 Jun; 126(21):3358-3372. PubMed ID: 35587993 [TBL] [Abstract][Full Text] [Related]
10. Combined ReaxFF and Ab Initio MD Simulations of Brown Coal Oxidation and Coal-Water Interactions. Yu S; Chu R; Li X; Wu G; Meng X Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052097 [TBL] [Abstract][Full Text] [Related]
11. Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis. Li W; Zhu YM; Wang G; Wang Y; Liu Y J Mol Model; 2015 Aug; 21(8):188. PubMed ID: 26149754 [TBL] [Abstract][Full Text] [Related]
12. Detailed Reaction Kinetics for Hydrocarbon Fuels: The Development and Application of the ReaxFF Wang Q; He Q; Xiao B; Zhai D; Shen Y; Liu Y; Goddard WA J Phys Chem A; 2024 Jun; 128(25):5065-5076. PubMed ID: 38870409 [TBL] [Abstract][Full Text] [Related]
13. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics. Zheng M; Li X; Guo L J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611 [TBL] [Abstract][Full Text] [Related]
14. Reactive Molecular Dynamics Simulations and Quantum Chemistry Calculations To Investigate Soot-Relevant Reaction Pathways for Hexylamine Isomers. Kwon H; Etz BD; Montgomery MJ; Messerly R; Shabnam S; Vyas S; van Duin ACT; McEnally CS; Pfefferle LD; Kim S; Xuan Y J Phys Chem A; 2020 May; 124(21):4290-4304. PubMed ID: 32364731 [TBL] [Abstract][Full Text] [Related]
15. Molecular Mechanism Study of the Kinetics and Product Yields during Copyrolysis of Biomass and Solid Wastes: ReaxFF-MD Method Approach. Xu J; Zhu L ACS Omega; 2023 Oct; 8(39):36126-36135. PubMed ID: 37810673 [TBL] [Abstract][Full Text] [Related]
16. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
17. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
18. Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases. Jensen BD; Bandyopadhyay A; Wise KE; Odegard GM J Chem Theory Comput; 2012 Sep; 8(9):3003-8. PubMed ID: 26605713 [TBL] [Abstract][Full Text] [Related]
19. A study on the reaction mechanism of microwave pyrolysis of oily sludge by products analysis and ReaxFF MD simulation. Wen Y; Li W; Xie Y; Qin Z; Gu M; Wang T; Hou Y Environ Technol; 2022 May; 43(13):2002-2016. PubMed ID: 33319633 [TBL] [Abstract][Full Text] [Related]
20. ReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell. Merinov BV; Mueller JE; van Duin AC; An Q; Goddard WA J Phys Chem Lett; 2014 Nov; 5(22):4039-43. PubMed ID: 26276491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]