These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 38937969)
1. An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation. Porreca I; Blassberg R; Harbottle J; Joubert B; Mielczarek O; Stombaugh J; Hemphill K; Sumner J; Pazeraitis D; Touza JL; Francescatto M; Firth M; Selmi T; Collantes JC; Strezoska Z; Taylor B; Jin S; Wiggins CM; van Brabant Smith A; Lambourne JJ Mol Ther; 2024 Aug; 32(8):2692-2710. PubMed ID: 38937969 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Mollanoori H; Shahraki H; Rahmati Y; Teimourian S Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221 [TBL] [Abstract][Full Text] [Related]
3. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Glaser V; Flugel C; Kath J; Du W; Drosdek V; Franke C; Stein M; Pruß A; Schmueck-Henneresse M; Volk HD; Reinke P; Wagner DL Genome Biol; 2023 Apr; 24(1):89. PubMed ID: 37095570 [TBL] [Abstract][Full Text] [Related]
4. Protocol for Efficient Generation of Chimeric Antigen Receptor T Cells with Multiplexed Gene Silencing by Epigenome Editing. Azcona MSR; Mussolino C Methods Mol Biol; 2024; 2842():209-223. PubMed ID: 39012598 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Webber BR; Lonetree CL; Kluesner MG; Johnson MJ; Pomeroy EJ; Diers MD; Lahr WS; Draper GM; Slipek NJ; Smeester BA; Lovendahl KN; McElroy AN; Gordon WR; Osborn MJ; Moriarity BS Nat Commun; 2019 Nov; 10(1):5222. PubMed ID: 31745080 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Liu X; Zhao Y Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200 [TBL] [Abstract][Full Text] [Related]
7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
8. High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy. Ding R; Chao CC; Gao Q Methods Cell Biol; 2022; 167():1-14. PubMed ID: 35152989 [TBL] [Abstract][Full Text] [Related]
9. Genome-Edited T Cell Therapies. Ottaviano G; Qasim W Hematol Oncol Clin North Am; 2022 Aug; 36(4):729-744. PubMed ID: 35773047 [TBL] [Abstract][Full Text] [Related]
10. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
11. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects. Georgiadis C; Preece R; Nickolay L; Etuk A; Petrova A; Ladon D; Danyi A; Humphryes-Kirilov N; Ajetunmobi A; Kim D; Kim JS; Qasim W Mol Ther; 2018 May; 26(5):1215-1227. PubMed ID: 29605708 [TBL] [Abstract][Full Text] [Related]
12. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Hu KJ; Yin ETS; Hu YX; Huang H Curr Med Sci; 2021 Jun; 41(3):420-430. PubMed ID: 34218353 [TBL] [Abstract][Full Text] [Related]
13. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy. Zhang X; Cheng C; Sun W; Wang H Methods Mol Biol; 2020; 2115():419-433. PubMed ID: 32006414 [TBL] [Abstract][Full Text] [Related]
14. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Dimitri A; Herbst F; Fraietta JA Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871 [TBL] [Abstract][Full Text] [Related]
15. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies. Maganti HB; Kirkham AM; Bailey AJM; Shorr R; Kekre N; Pineault N; Allan DS Cytotherapy; 2022 Apr; 24(4):405-412. PubMed ID: 35039239 [TBL] [Abstract][Full Text] [Related]
16. Generating universal anti-CD19 CAR T cells with a defined memory phenotype by CRISPR/Cas9 editing and safety evaluation of the transcriptome. Pavlovic K; Carmona-Luque M; Corsi GI; Maldonado-Pérez N; Molina-Estevez FJ; Peralbo-Santaella E; Cortijo-Gutiérrez M; Justicia-Lirio P; Tristán-Manzano M; Ronco-Díaz V; Ballesteros-Ribelles A; Millán-López A; Heredia-Velázquez P; Fuster-García C; Cathomen T; Seemann SE; Gorodkin J; Martin F; Herrera C; Benabdellah K Front Immunol; 2024; 15():1401683. PubMed ID: 38868778 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer. Kavousinia P; Ahmadi MH; Sadeghian H; Hosseini Bafghi M Cytotherapy; 2024 May; 26(5):436-443. PubMed ID: 38466263 [TBL] [Abstract][Full Text] [Related]
18. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255 [TBL] [Abstract][Full Text] [Related]
19. Progress in the application of CRISPR: From gene to base editing. Wu W; Yang Y; Lei H Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624 [TBL] [Abstract][Full Text] [Related]
20. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Li C; Mei H; Hu Y Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]