These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38938084)

  • 1. Structural Characterization of Pyruvic Acid Dimers Formed inside Helium Nanodroplets by Infrared Spectroscopy and Ab Initio Study.
    Chakraborty A; Henkel S; Schwaab G; Havenith M
    J Phys Chem A; 2024 Jul; 128(27):5307-5313. PubMed ID: 38938084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared laser spectroscopy of uracil and thymine in helium nanodroplets: vibrational transition moment angle study.
    Choi MY; Miller RE
    J Phys Chem A; 2007 Apr; 111(13):2475-9. PubMed ID: 17388352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting formic acid dimers into perspective: vibrational scrutiny in helium nanodroplets.
    Meyer KAE; Davies JA; Ellis AM
    Phys Chem Chem Phys; 2020 May; 22(17):9637-9646. PubMed ID: 32328597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the CH3 H2O radical complex stabilized in helium nanodroplets.
    Rudić S; Merritt JM; Miller RE
    Phys Chem Chem Phys; 2009 Jul; 11(26):5345-52. PubMed ID: 19551201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimers of acetic acid in helium nanodroplets.
    Davies JA; Hanson-Heine MWD; Besley NA; Shirley A; Trowers J; Yang S; Ellis AM
    Phys Chem Chem Phys; 2019 Jul; 21(26):13950-13958. PubMed ID: 30394472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar isomer of formic acid dimers formed in helium nanodroplets.
    Madeja F; Havenith M; Nauta K; Miller RE; Chocholousová J; Hobza P
    J Chem Phys; 2004 Jun; 120(22):10554-60. PubMed ID: 15268082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared action spectroscopy of the deprotonated formic acid trimer, trapped in helium nanodroplets.
    Taccone MI; Thomas DA; Ober K; Gewinner S; Schöllkopf W; Meijer G; von Helden G
    Phys Chem Chem Phys; 2023 Apr; 25(15):10907-10916. PubMed ID: 37014635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IR spectroscopy of pyridine-water structures in helium nanodroplets.
    Nieto P; Letzner M; Endres T; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2014 May; 16(18):8384-91. PubMed ID: 24658223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution infrared spectroscopy of Mg-HF and Mg-(HF)2 solvated in helium nanodroplets.
    Stiles PL; Douberly GE; Miller RE
    J Chem Phys; 2009 May; 130(18):184313. PubMed ID: 19449927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A close competition between O-HO and O-Hπ hydrogen bonding: IR spectroscopy of anisole-methanol complex in helium nanodroplets.
    Roy TK; Mani D; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2020 Oct; 22(39):22408-22416. PubMed ID: 32996489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectra and integrated band intensities of the low order OH stretching overtones in peroxyformic acid: an atmospheric molecule with prototypical intramolecular hydrogen bonding.
    Hazra MK; Sinha A
    J Phys Chem A; 2011 Jun; 115(21):5294-306. PubMed ID: 21553873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of NH stretching vibrations in small ammonia clusters by infrared spectroscopy in He droplets and ab initio calculations.
    Slipchenko MN; Sartakov BG; Vilesov AF; Xantheas SS
    J Phys Chem A; 2007 Aug; 111(31):7460-71. PubMed ID: 17530831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared spectra of the Cl- -C2H4 and Br- -C2H4 anion dimers.
    Wilson RL; Loh ZM; Wild DA; Thompson CD; Schuder MD; Lisy JM; Bieske EJ
    Phys Chem Chem Phys; 2005 Oct; 7(19):3419-25. PubMed ID: 16273142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessing different binding sites of a multifunctional molecule: IR spectroscopy of propargyl alcoholwater complexes in helium droplets.
    Mani D; Pal N; Smialkowski M; Beakovic C; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2019 Sep; 21(37):20582-20587. PubMed ID: 31147653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylene⋅⋅⋅furan trimer formation at 0.37 K as a model for ultracold aggregation of non- and weakly polar molecules.
    Metzelthin A; Sánchez-García E; Birer Ö; Schwaab G; Thiel W; Sander W; Havenith M
    Chemphyschem; 2011 Jul; 12(10):2009-17. PubMed ID: 21557433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base formalism in dispersion-stabilized S-H···Y (Y═O, S) hydrogen-bonding interactions.
    Bhattacherjee A; Matsuda Y; Fujii A; Wategaonkar S
    J Phys Chem A; 2015 Feb; 119(7):1117-26. PubMed ID: 25611613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared laser spectroscopy of imidazole complexes in helium nanodroplets: monomer, dimer, and binary water complexes.
    Choi MY; Miller RE
    J Phys Chem A; 2006 Aug; 110(30):9344-51. PubMed ID: 16869682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational Spectroscopy of Benzonitrile-(Water)
    Khatri J; Roy TK; Chatterjee K; Schwaab G; Havenith M
    J Phys Chem A; 2021 Aug; 125(32):6954-6963. PubMed ID: 34355893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of HCl clusters in helium nanodroplets: experiments and ab initio calculations as stepping stones from gas phase to bulk.
    Skvortsov D; Choi MY; Vilesov AF
    J Phys Chem A; 2007 Dec; 111(49):12711-6. PubMed ID: 18004830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Infrared Spectroscopic Characterization of Hemibonded Water Dimer Cation in Superfluid Helium Nanodroplets.
    Iguchi A; Singh A; Bergmeister S; Azhagesan AA; Mizuse K; Fujii A; Tanuma H; Azuma T; Scheier P; Kuma S; Vilesov AF
    J Phys Chem Lett; 2023 Sep; 14(36):8199-8204. PubMed ID: 37672355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.