These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38938722)

  • 1. Deep Learning to Estimate Left Ventricular Ejection Fraction From Routine Coronary Angiographic Images.
    Rostami B; Fetterly K; Attia Z; Challa A; Lopez-Jimenez F; Thaden J; Asirvatham S; Friedman P; Gulati R; Alkhouli M
    JACC Adv; 2023 Nov; 2(9):100632. PubMed ID: 38938722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles.
    Alkhodari M; Jelinek HF; Karlas A; Soulaidopoulos S; Arsenos P; Doundoulakis I; Gatzoulis KA; Tsioufis K; Hadjileontiadis LJ; Khandoker AH
    Front Cardiovasc Med; 2021; 8():755968. PubMed ID: 34881307
    [No Abstract]   [Full Text] [Related]  

  • 3. Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms.
    Avram R; Barrios JP; Abreau S; Goh CY; Ahmed Z; Chung K; So DY; Olgin JE; Tison GH
    JAMA Cardiol; 2023 Jun; 8(6):586-594. PubMed ID: 37163297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram.
    Vaid A; Johnson KW; Badgeley MA; Somani SS; Bicak M; Landi I; Russak A; Zhao S; Levin MA; Freeman RS; Charney AW; Kukar A; Kim B; Danilov T; Lerakis S; Argulian E; Narula J; Nadkarni GN; Glicksberg BS
    JACC Cardiovasc Imaging; 2022 Mar; 15(3):395-410. PubMed ID: 34656465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AI Based CMR Assessment of Biventricular Function: Clinical Significance of Intervendor Variability and Measurement Errors.
    Wang S; Patel H; Miller T; Ameyaw K; Narang A; Chauhan D; Anand S; Anyanwu E; Besser SA; Kawaji K; Liu XP; Lang RM; Mor-Avi V; Patel AR
    JACC Cardiovasc Imaging; 2022 Mar; 15(3):413-427. PubMed ID: 34656471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis.
    van Hamersvelt RW; Zreik M; Voskuil M; Viergever MA; Išgum I; Leiner T
    Eur Radiol; 2019 May; 29(5):2350-2359. PubMed ID: 30421020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of coronary angiographic projections to balance the clinical yield with the radiation risk.
    Smith IR; Cameron J; Mengersen KL; Rivers JT
    Br J Radiol; 2012 Sep; 85(1017):e722-8. PubMed ID: 22514100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value of combined assessment of global and segmental ventricular contraction with right anterior oblique ECG-gated first-pass and left anterior oblique equilibrium radionuclide ventriculography.
    Kelly MJ; Kalff V; Rose D; Harper RW; Anderson ST; Pitt A
    Eur J Nucl Med; 1985; 10(5-6):214-21. PubMed ID: 2985388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.
    Han D; Liu J; Sun Z; Cui Y; He Y; Yang Z
    Comput Methods Programs Biomed; 2020 Nov; 196():105651. PubMed ID: 32712571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study.
    Bachtiger P; Petri CF; Scott FE; Ri Park S; Kelshiker MA; Sahemey HK; Dumea B; Alquero R; Padam PS; Hatrick IR; Ali A; Ribeiro M; Cheung WS; Bual N; Rana B; Shun-Shin M; Kramer DB; Fragoyannis A; Keene D; Plymen CM; Peters NS
    Lancet Digit Health; 2022 Feb; 4(2):e117-e125. PubMed ID: 34998740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of left ventricular ejection fraction using an 8-layer residual U-Net with deep supervision based on cardiac CT angiography images versus echocardiography: a comparative study.
    Zhang J; Yang L; Hu Y; Leng X; Huang W; Liu Y; Liu X; Wang L; Zhang J; Li D; Tang L; Xiang J; Du C
    Quant Imaging Med Surg; 2023 Sep; 13(9):5852-5862. PubMed ID: 37711777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.
    Hae H; Kang SJ; Kim WJ; Choi SY; Lee JG; Bae Y; Cho H; Yang DH; Kang JW; Lim TH; Lee CH; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ
    PLoS Med; 2018 Nov; 15(11):e1002693. PubMed ID: 30422987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to screen left ventricular dysfunction through ECG based on convolutional neural network.
    Sun JY; Qiu Y; Guo HC; Hua Y; Shao B; Qiao YC; Guo J; Ding HL; Zhang ZY; Miao LF; Wang N; Zhang YM; Chen Y; Lu J; Dai M; Zhang CY; Wang RX
    J Cardiovasc Electrophysiol; 2021 Apr; 32(4):1095-1102. PubMed ID: 33565217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of post-myocardial infarction regional and global left ventricular function by monoplane ventriculography: superiority of right versus left anterior oblique projection at any infarct location.
    Nixdorff U; Kissler S; Erbel R; Rupprecht HJ; Voigtländer T; Spiecker M; Meyer J
    Coron Artery Dis; 1996 Dec; 7(12):885-93. PubMed ID: 9116931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study.
    Dorbala S; Vangala D; Sampson U; Limaye A; Kwong R; Di Carli MF
    J Nucl Med; 2007 Mar; 48(3):349-58. PubMed ID: 17332611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based automated left ventricular ejection fraction assessment using 2-D echocardiography.
    Liu X; Fan Y; Li S; Chen M; Li M; Hau WK; Zhang H; Xu L; Lee AP
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H390-H399. PubMed ID: 34170197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic accuracy of resting left ventricular akinesia/hypokinesia in predicting abnormal coronary angiography.
    Lutfi MF
    BMC Cardiovasc Disord; 2016 Jun; 16():137. PubMed ID: 27295983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis.
    Noseworthy PA; Attia ZI; Brewer LC; Hayes SN; Yao X; Kapa S; Friedman PA; Lopez-Jimenez F
    Circ Arrhythm Electrophysiol; 2020 Mar; 13(3):e007988. PubMed ID: 32064914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of filming projection and interobserver variability on angiographic biplane left ventricular volume determination.
    Rogers WJ; Smith LR; Hood WP; Mantle JA; Rackley CE; Russell RO
    Circulation; 1979 Jan; 59(1):96-104. PubMed ID: 758129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective Comparison of Free-Breathing Accelerated Cine Deep Learning Reconstruction Versus Standard Breath-Hold Cardiac MRI Sequences in Patients With Ischemic Heart Disease.
    Monteuuis D; Bouzerar R; Dantoing C; Poujol J; Bohbot Y; Renard C
    AJR Am J Roentgenol; 2024 May; 222(5):e2330272. PubMed ID: 38323784
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.