These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38938794)

  • 1. Integrating Au Catalysis and Engineered Amine Dehydrogenase for the Chemoenzymatic Synthesis of Chiral Aliphatic Amines.
    Liu J; Bai J; Liu Y; Zhou L; He Y; Ma L; Liu G; Gao J; Jiang Y
    JACS Au; 2024 Jun; 4(6):2281-2290. PubMed ID: 38938794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase.
    Kong W; Liu Y; Huang C; Zhou L; Gao J; Turner NJ; Jiang Y
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202202264. PubMed ID: 35285128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall.
    Jouffroy M; Nguyen TM; Cordier M; Blot M; Roisnel T; Gramage-Doria R
    Chemistry; 2022 Jun; 28(36):e202201078. PubMed ID: 35474525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chemoenzymatic Cascade Combining a Hydration Catalyst with an Amine Dehydrogenase: Synthesis of Chiral Amines.
    Chang F; Wang C; Chen Q; Zhang Y; Liu G
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202114809. PubMed ID: 34935242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones].
    Cheng F; Li Q; Li H; Xue Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1794-1816. PubMed ID: 33164457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High coenzyme affinity chimeric amine dehydrogenase based on domain engineering.
    Li J; Mu X; Wu T; Xu Y
    Bioresour Bioprocess; 2022 Mar; 9(1):33. PubMed ID: 38647888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via CuH-Catalyzed Hydroamination.
    Niu D; Buchwald SL
    J Am Chem Soc; 2015 Aug; 137(30):9716-21. PubMed ID: 26144542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD(P)H-Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application.
    Sharma M; Mangas-Sanchez J; Turner NJ; Grogan G
    Adv Synth Catal; 2017 Jun; 359(12):2011-2025. PubMed ID: 30008635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity.
    Tseliou V; Schilder D; Masman MF; Knaus T; Mutti FG
    Chemistry; 2021 Feb; 27(10):3315-3325. PubMed ID: 33073866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Chiral Amino Alcohols via an Engineered Amine Dehydrogenase in
    Tong F; Qin Z; Wang H; Jiang Y; Li J; Ming H; Qu G; Xiao Y; Sun Z
    Front Bioeng Biotechnol; 2021; 9():778584. PubMed ID: 35071200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective organocatalytic reductive amination of aliphatic ketones by benzothiazoline as hydrogen donor.
    Saito K; Akiyama T
    Chem Commun (Camb); 2012 May; 48(38):4573-5. PubMed ID: 22499244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the substrate scope of DNAzyme catalysis for reductive amination with aliphatic amines.
    Yang S; Silverman SK
    Org Biomol Chem; 2023 Mar; 21(9):1910-1919. PubMed ID: 36786764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.
    Liu XY; Guo Z; Dong SS; Li XH; Che CM
    Chemistry; 2011 Nov; 17(46):12932-45. PubMed ID: 22012740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Amines via Enantioselective π-Allyliridium-
    Stivala CE; Zbieg JR; Liu P; Krische MJ
    Acc Chem Res; 2022 Aug; 55(15):2138-2147. PubMed ID: 35830564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scope of the organocatalysed asymmetric reductive amination of ketones with trichlorosilane.
    Gautier FM; Jones S; Li X; Martin SJ
    Org Biomol Chem; 2011 Oct; 9(22):7860-8. PubMed ID: 21960353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase.
    Tseliou V; Knaus T; Masman MF; Corrado ML; Mutti FG
    Nat Commun; 2019 Aug; 10(1):3717. PubMed ID: 31420547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.