BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38938817)

  • 1. Augmented Memory: Sample-Efficient Generative Molecular Design with Reinforcement Learning.
    Guo J; Schwaller P
    JACS Au; 2024 Jun; 4(6):2160-2172. PubMed ID: 38938817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ; Margreitter C; Blaschke T; Kolarova S; de Castro RL
    J Comput Aided Mol Des; 2023 Aug; 37(8):373-394. PubMed ID: 37329395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LOGICS: Learning optimal generative distribution for designing de novo chemical structures.
    Bae B; Bae H; Nam H
    J Cheminform; 2023 Sep; 15(1):77. PubMed ID: 37674239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Assays Simulator to Unravel Predictors Hacking in Goal-Directed Molecular Generations.
    Gendreau P; Turk JA; Drizard N; Ribeiro da Silva VB; Descamps C; Gaston-Mathé Y
    J Chem Inf Model; 2023 Jul; 63(13):3983-3998. PubMed ID: 37347961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MERMAID: an open source automated hit-to-lead method based on deep reinforcement learning.
    Erikawa D; Yasuo N; Sekijima M
    J Cheminform; 2021 Nov; 13(1):94. PubMed ID: 34838134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds.
    Korshunova M; Huang N; Capuzzi S; Radchenko DS; Savych O; Moroz YS; Wells CI; Willson TM; Tropsha A; Isayev O
    Commun Chem; 2022 Oct; 5(1):129. PubMed ID: 36697952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design.
    Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i84-i92. PubMed ID: 34252946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory-Aware Active Learning in Mobile Sensing Systems.
    Ashari ZE; Chaytor NS; Cook DJ; Ghasemzadeh H
    IEEE Trans Mob Comput; 2022 Jan; 21(1):1. PubMed ID: 34970086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory augmented recurrent neural networks for de-novo drug design.
    Suresh N; Chinnakonda Ashok Kumar N; Subramanian S; Srinivasa G
    PLoS One; 2022; 17(6):e0269461. PubMed ID: 35737661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; BĂ©quignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization.
    Danilov VV; Klyshnikov KY; Onishenko PS; Proutski A; Gankin Y; Melgani F; Ovcharenko EA
    Front Bioeng Biotechnol; 2023; 11():1238130. PubMed ID: 37781537
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning With Quantum-Inspired Experience Replay.
    Wei Q; Ma H; Chen C; Dong D
    IEEE Trans Cybern; 2022 Sep; 52(9):9326-9338. PubMed ID: 33600343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.