BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38938817)

  • 41. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning.
    Erikawa D; Yasuo N; Suzuki T; Nakamura S; Sekijima M
    ACS Omega; 2023 Oct; 8(40):37431-37441. PubMed ID: 37841174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generative Models Should at Least Be Able to Design Molecules That Dock Well: A New Benchmark.
    Ciepliński T; Danel T; Podlewska S; Jastrzȩbski S
    J Chem Inf Model; 2023 Jun; 63(11):3238-3247. PubMed ID: 37224003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Designing optimized drug candidates with Generative Adversarial Network.
    Abbasi M; Santos BP; Pereira TC; Sofia R; Monteiro NRC; Simões CJV; Brito RMM; Ribeiro B; Oliveira JL; Arrais JP
    J Cheminform; 2022 Jun; 14(1):40. PubMed ID: 35754029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How Deep Learning Tools Can Help Protein Engineers Find Good Sequences.
    Osadchy M; Kolodny R
    J Phys Chem B; 2021 Jun; 125(24):6440-6450. PubMed ID: 34105961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning.
    Li X; Fourches D
    J Chem Inf Model; 2021 Apr; 61(4):1560-1569. PubMed ID: 33715361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Improved Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strategy for Solving Optimization Problems.
    Wu D; Wang S; Liu Q; Abualigah L; Jia H
    Comput Intell Neurosci; 2022; 2022():1535957. PubMed ID: 35371212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Reinforcement Learning for Multiparameter Optimization in
    Ståhl N; Falkman G; Karlsson A; Mathiason G; Boström J
    J Chem Inf Model; 2019 Jul; 59(7):3166-3176. PubMed ID: 31273995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Data augmentation using generative models for track intrusion detection.
    Lee S; Kim B; Lee H
    Sci Prog; 2023; 106(4):368504231212769. PubMed ID: 37956652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On Data Augmentation for GAN Training.
    Tran NT; Tran VH; Nguyen NB; Nguyen TK; Cheung NM
    IEEE Trans Image Process; 2021; 30():1882-1897. PubMed ID: 33428571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive assessment of deep generative architectures for de novo drug design.
    Wang M; Sun H; Wang J; Pang J; Chai X; Xu L; Li H; Cao D; Hou T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular substructure tree generative model for de novo drug design.
    Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GuacaMol: Benchmarking Models for de Novo Molecular Design.
    Brown N; Fiscato M; Segler MHS; Vaucher AC
    J Chem Inf Model; 2019 Mar; 59(3):1096-1108. PubMed ID: 30887799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaffold-Constrained Molecular Generation.
    Langevin M; Minoux H; Levesque M; Bianciotto M
    J Chem Inf Model; 2020 Dec; 60(12):5637-5646. PubMed ID: 33301333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control.
    Lin R; Chen J; Xie L; Su H
    Neural Netw; 2023 Jan; 158():197-215. PubMed ID: 36462366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MolGPT: Molecular Generation Using a Transformer-Decoder Model.
    Bagal V; Aggarwal R; Vinod PK; Priyakumar UD
    J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep Generative Models for 3D Linker Design.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2020 Apr; 60(4):1983-1995. PubMed ID: 32195587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space.
    Wang M; Wu Z; Wang J; Weng G; Kang Y; Pan P; Li D; Deng Y; Yao X; Bing Z; Hsieh CY; Hou T
    J Chem Inf Model; 2024 Feb; 64(4):1213-1228. PubMed ID: 38302422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid Reconstruction of Time-varying Gene Regulatory Networks with Limited Main Memory.
    Pyne S; Anand A
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1608-1619. PubMed ID: 31613774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.