These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38938817)

  • 61. Representation Learning and Reinforcement Learning for Dynamic Complex Motion Planning System.
    Zhou C; Huang B; Franti P
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028017
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generative Models for De Novo Drug Design.
    Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M
    J Med Chem; 2021 Oct; 64(19):14011-14027. PubMed ID: 34533311
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Memory-assisted reinforcement learning for diverse molecular de novo design.
    Blaschke T; Engkvist O; Bajorath J; Chen H
    J Cheminform; 2020 Nov; 12(1):68. PubMed ID: 33292554
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer.
    Liao Z; Xie L; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules.
    Wu CK; Zhang XC; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34427296
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm.
    Zhu JF; Hao ZK; Liu Q; Yin Y; Lu CQ; Huang ZY; Chen EH
    J Comput Sci Technol; 2022; 37(6):1464-1477. PubMed ID: 36594005
    [TBL] [Abstract][Full Text] [Related]  

  • 68. LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty.
    Li S; Hu C; Ke S; Yang C; Chen J; Xiong Y; Liu H; Hong L
    J Chem Inf Model; 2023 Jul; 63(13):4207-4215. PubMed ID: 37341350
    [TBL] [Abstract][Full Text] [Related]  

  • 69. MolFinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES.
    Kwon Y; Lee J
    J Cheminform; 2021 Mar; 13(1):24. PubMed ID: 33736687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A deep learning method for predicting molecular properties and compound-protein interactions.
    Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J
    J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning.
    Hafez MB; Immisch T; Weber T; Wermter S
    Front Neurorobot; 2023; 17():1127642. PubMed ID: 37440981
    [TBL] [Abstract][Full Text] [Related]  

  • 72. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sample efficient reinforcement learning with active learning for molecular design.
    Dodds M; Guo J; Löhr T; Tibo A; Engkvist O; Janet JP
    Chem Sci; 2024 Mar; 15(11):4146-4160. PubMed ID: 38487235
    [TBL] [Abstract][Full Text] [Related]  

  • 74. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 75. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search.
    Iwata H; Nakai T; Koyama T; Matsumoto S; Kojima R; Okuno Y
    J Chem Inf Model; 2023 Dec; 63(23):7392-7400. PubMed ID: 37993764
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GEN: highly efficient SMILES explorer using autodidactic generative examination networks.
    van Deursen R; Ertl P; Tetko IV; Godin G
    J Cheminform; 2020 Apr; 12(1):22. PubMed ID: 33430998
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A flexible data-free framework for structure-based
    Du H; Jiang D; Zhang O; Wu Z; Gao J; Zhang X; Wang X; Deng Y; Kang Y; Li D; Pan P; Hsieh CY; Hou T
    Chem Sci; 2023 Nov; 14(43):12166-12181. PubMed ID: 37969589
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deep reinforcement learning enables adaptive-image augmentation for automated optical inspection of plant rust.
    Wang S; Khan A; Lin Y; Jiang Z; Tang H; Alomar SY; Sanaullah M; Bhatti UA
    Front Plant Sci; 2023; 14():1142957. PubMed ID: 37484461
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization.
    Sun M; Wang H; Xing J; Chen B; Meng H; Zhou J
    KDD; 2022 Aug; 2022():4724-4732. PubMed ID: 37056719
    [TBL] [Abstract][Full Text] [Related]  

  • 80. COMA: efficient structure-constrained molecular generation using contractive and margin losses.
    Choi J; Seo S; Park S
    J Cheminform; 2023 Jan; 15(1):8. PubMed ID: 36658602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.