These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38939344)
21. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
22. Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas. Dai M; Liu Y; Hu Y; Li G; Zhang J; Xiao Z; Lv F Eur Radiol; 2022 Nov; 32(11):7988-7997. PubMed ID: 35583712 [TBL] [Abstract][Full Text] [Related]
23. Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning. Liu W; Cheng Y; Liu Z; Liu C; Cattell R; Xie X; Wang Y; Yang X; Ye W; Liang C; Li J; Gao Y; Huang C; Liang C Acad Radiol; 2021 Feb; 28(2):e44-e53. PubMed ID: 32278690 [TBL] [Abstract][Full Text] [Related]
24. Deep Learning Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma. Dong X; Yang J; Zhang B; Li Y; Wang G; Chen J; Wei Y; Zhang H; Chen Q; Jin S; Wang L; He H; Gan M; Ji W J Magn Reson Imaging; 2024 Jan; 59(1):108-119. PubMed ID: 37078470 [TBL] [Abstract][Full Text] [Related]
25. Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models. Liu F; Zang Y; Feng L; Shi X; Wu W; Liu X; Song Y; Xu J; Gui S; Chen X J Imaging Inform Med; 2024 May; ():. PubMed ID: 38750186 [TBL] [Abstract][Full Text] [Related]
26. Prediction of 5-year progression-free survival in advanced nasopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep learning-based radiomics. Gu B; Meng M; Bi L; Kim J; Feng DD; Song S Front Oncol; 2022; 12():899351. PubMed ID: 35965589 [TBL] [Abstract][Full Text] [Related]
27. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
28. MRI radiomics may predict early tumor recurrence in patients with sinonasal squamous cell carcinoma. Park CJ; Choi SH; Kim D; Kim SB; Han K; Ahn SS; Lee WH; Choi EC; Keum KC; Kim J Eur Radiol; 2024 May; 34(5):3151-3159. PubMed ID: 37926740 [TBL] [Abstract][Full Text] [Related]
29. Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study. Zhou C; Zhang YF; Guo S; Wang D; Lv HX; Qiao XN; Wang R; Chang DH; Zhao LM; Zhou FH Discov Oncol; 2023 Jul; 14(1):133. PubMed ID: 37470865 [TBL] [Abstract][Full Text] [Related]
30. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer. Zhang YF; Zhou C; Guo S; Wang C; Yang J; Yang ZJ; Wang R; Zhang X; Zhou FH J Cancer Res Clin Oncol; 2024 Feb; 150(2):78. PubMed ID: 38316655 [TBL] [Abstract][Full Text] [Related]
31. Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images. Wang Y; Gao J; Yin Z; Wen Y; Sun M; Han R Front Oncol; 2024; 14():1384105. PubMed ID: 38803533 [TBL] [Abstract][Full Text] [Related]
32. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors. Gu J; Yu Q; Li Q; Peng J; Lv F; Gong B; Zhang X Front Oncol; 2022; 12():1003639. PubMed ID: 36212455 [TBL] [Abstract][Full Text] [Related]
33. Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features. Huang Y; Feng A; Lin Y; Gu H; Chen H; Wang H; Shao Y; Duan Y; Zhuo W; Xu Z Radiat Oncol; 2022 Nov; 17(1):188. PubMed ID: 36397060 [TBL] [Abstract][Full Text] [Related]
34. Radiomics analysis of intratumoral and different peritumoral regions from multiparametric MRI for evaluating HER2 status of breast cancer: A comparative study. Zhou J; Yu X; Wu Q; Wu Y; Fu C; Wang Y; Hai M; Tan H; Wang M Heliyon; 2024 Apr; 10(7):e28722. PubMed ID: 38623231 [TBL] [Abstract][Full Text] [Related]
35. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques. Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774 [TBL] [Abstract][Full Text] [Related]
36. Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging. Wang J; He Y; Yan L; Chen S; Zhang K Acad Radiol; 2024 Oct; 31(10):4159-4170. PubMed ID: 38693026 [TBL] [Abstract][Full Text] [Related]
37. Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2- Breast Cancer Quantified With 21-Gene Recurrence Score. Chen Y; Tang W; Liu W; Li R; Wang Q; Shen X; Gong J; Gu Y; Peng W J Magn Reson Imaging; 2023 Aug; 58(2):444-453. PubMed ID: 36440706 [TBL] [Abstract][Full Text] [Related]
38. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Yu FH; Miao SM; Li CY; Hang J; Deng J; Ye XH; Liu Y Eur Radiol; 2023 Aug; 33(8):5634-5644. PubMed ID: 36976336 [TBL] [Abstract][Full Text] [Related]
39. Multiparametric MRI-Based Radiomics Approaches for Preoperative Prediction of EGFR Mutation Status in Spinal Bone Metastases in Patients with Lung Adenocarcinoma. Jiang X; Ren M; Shuang X; Yang H; Shi D; Lai Q; Dong Y J Magn Reson Imaging; 2021 Aug; 54(2):497-507. PubMed ID: 33638577 [TBL] [Abstract][Full Text] [Related]
40. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Liao H; Yang J; Li Y; Liang H; Ye J; Liu Y Front Oncol; 2022; 12():990156. PubMed ID: 36158647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]