These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38939610)
1. Discriminative feature analysis of dairy products based on machine learning algorithms and Raman spectroscopy. Li JX; Qing CC; Wang XQ; Zhu MJ; Zhang BY; Zhang ZY Curr Res Food Sci; 2024; 8():100782. PubMed ID: 38939610 [TBL] [Abstract][Full Text] [Related]
2. The statistical fusion identification of dairy products based on extracted Raman spectroscopy. Zhang ZY RSC Adv; 2020 Aug; 10(50):29682-29687. PubMed ID: 35518240 [TBL] [Abstract][Full Text] [Related]
3. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM. He Y; Zhang W; Ma Y; Li J; Ma B Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337 [TBL] [Abstract][Full Text] [Related]
4. Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction. Chen C; Du G; Tong D; Lv G; Lv X; Si R; Tang J; Li H; Ma H; Mo J J Biophotonics; 2020 Feb; 13(2):e201900099. PubMed ID: 31593625 [TBL] [Abstract][Full Text] [Related]
5. Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis. Yu Q; Shen X; Yi L; Liang M; Li G; Guan Z; Wu X; Castel H; Hu B; Yin P; Zhang W ACS Sens; 2024 Aug; 9(8):3907-3920. PubMed ID: 38934798 [TBL] [Abstract][Full Text] [Related]
6. Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy. Liu Y; Wang Z; Zhou Z; Xiong T Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121274. PubMed ID: 35500354 [TBL] [Abstract][Full Text] [Related]
7. Comparison of feature selection and data fusion of Fourier transform infrared and Raman spectroscopy for identifying watercolor ink. Zou Y; Zhang A; Wang X; Yang L; Ding M J Forensic Sci; 2024 Mar; 69(2):584-592. PubMed ID: 38291595 [TBL] [Abstract][Full Text] [Related]
8. Deep learning analysis for rapid detection and classification of household plastics based on Raman spectroscopy. Qin Y; Qiu J; Tang N; He Y; Fan L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123854. PubMed ID: 38228011 [TBL] [Abstract][Full Text] [Related]
9. [Identification of varieties of black bean using ground based hyperspectral imaging]. Zhang C; Liu F; Zhang HL; Kong WW; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405 [TBL] [Abstract][Full Text] [Related]
10. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration]. Li BN; Wu YW; Wang Y; Zu WC; Chen SC Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210 [TBL] [Abstract][Full Text] [Related]
11. Rapid qualitative detection of titanium dioxide adulteration in persimmon icing using portable Raman spectrometer and Machine learning. Li J; Zhang L; Zhu F; Song Y; Yu K; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122221. PubMed ID: 36549243 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopy combined with multiple algorithms for analysis and rapid screening of chronic renal failure. Chen C; Yang L; Li H; Chen F; Chen C; Gao R; Lv XY; Tang J Photodiagnosis Photodyn Ther; 2020 Jun; 30():101792. PubMed ID: 32353420 [TBL] [Abstract][Full Text] [Related]
13. Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy. Cai Y; Xu D; Shi H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120607. PubMed ID: 34836810 [TBL] [Abstract][Full Text] [Related]
14. Discrimination of Tetrastigma hemsleyanum according to geographical origin by near-infrared spectroscopy combined with a deep learning approach. Zhou D; Yu Y; Hu R; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118380. PubMed ID: 32388414 [TBL] [Abstract][Full Text] [Related]
15. Serum analysis based on SERS combined with 2D convolutional neural network and Gramian angular field for breast cancer screening. Cheng N; Gao Y; Ju S; Kong X; Lyu J; Hou L; Jin L; Shen B Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124054. PubMed ID: 38382221 [TBL] [Abstract][Full Text] [Related]
16. Surface-Enhanced Raman Spectroscopy-Based Detection of Micro-RNA Biomarkers for Biomedical Diagnosis Using a Comparative Study of Interpretable Machine Learning Algorithms. Li JQ; Neng-Wang H; Canning AJ; Gaona A; Crawford BM; Garman KS; Vo-Dinh T Appl Spectrosc; 2024 Jan; 78(1):84-98. PubMed ID: 37908079 [TBL] [Abstract][Full Text] [Related]
17. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Ma D; Shang L; Tang J; Bao Y; Fu J; Yin J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119732. PubMed ID: 33819758 [TBL] [Abstract][Full Text] [Related]
18. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191 [TBL] [Abstract][Full Text] [Related]
19. High-precision bladder cancer diagnosis method: 2D Raman spectrum figures based on maintenance technology combined with automatic weighted feature fusion network. Yang M; Wang J; Quan S; Xu Q Anal Chim Acta; 2023 Nov; 1282():341908. PubMed ID: 37923405 [TBL] [Abstract][Full Text] [Related]
20. Enhanced data preprocessing with novel window function in Raman spectroscopy: Leveraging feature selection and machine learning for raspberry origin identification. Zhao Y; Lv W; Zhang Y; Tang M; Wang H Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124913. PubMed ID: 39126867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]