These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38940172)

  • 1. Unveil cis-acting combinatorial mRNA motifs by interpreting deep neural network.
    Zeng X; Wei Z; Du Q; Li J; Xie Z; Wang X
    Bioinformatics; 2024 Jun; 40(Supplement_1):i381-i389. PubMed ID: 38940172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks.
    Wei Z; Hua K; Wei L; Ma S; Jiang R; Zhang X; Li Y; Wong WH; Wang X
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2216698120. PubMed ID: 37023129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of mRNA degradation dynamics using deep neural networks.
    Yaish O; Orenstein Y
    Bioinformatics; 2022 Jan; 38(4):1087-1101. PubMed ID: 34849591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network.
    Li JY; Jin S; Tu XM; Ding Y; Gao G
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34219140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base-resolution models of transcription-factor binding reveal soft motif syntax.
    Avsec Ž; Weilert M; Shrikumar A; Krueger S; Alexandari A; Dalal K; Fropf R; McAnany C; Gagneur J; Kundaje A; Zeitlinger J
    Nat Genet; 2021 Mar; 53(3):354-366. PubMed ID: 33603233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mRNA subcellular localization using deep recurrent neural networks.
    Yan Z; Lécuyer E; Blanchette M
    Bioinformatics; 2019 Jul; 35(14):i333-i342. PubMed ID: 31510698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning.
    Wang J; Horlacher M; Cheng L; Winther O
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Method for Predicting DNA Motif Length Based On Deep Learning.
    Yu Q; Zhang X; Hu Y; Chen S; Yang L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):61-73. PubMed ID: 35275822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CodonBERT: a BERT-based architecture tailored for codon optimization using the cross-attention mechanism.
    Ren Z; Jiang L; Di Y; Zhang D; Gong J; Gong J; Jiang Q; Fu Z; Sun P; Zhou B; Ni M
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38788220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide map of RNA degradation kinetics patterns in dendritic cells after LPS stimulation facilitates identification of primary sequence and secondary structure motifs in mRNAs.
    Kumagai Y; Vandenbon A; Teraguchi S; Akira S; Suzuki Y
    BMC Genomics; 2016 Dec; 17(Suppl 13):1032. PubMed ID: 28155712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic approach to RNA-associated motif discovery.
    Gao T; Shu J; Cui J
    BMC Genomics; 2018 Feb; 19(1):146. PubMed ID: 29444662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mRNA-CLA: An interpretable deep learning approach for predicting mRNA subcellular localization.
    Chen Y; Du Z; Ren X; Pan C; Zhu Y; Li Z; Meng T; Yao X
    Methods; 2024 Jul; 227():17-26. PubMed ID: 38705502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep neural networks for interpreting RNA-binding protein target preferences.
    Ghanbari M; Ohler U
    Genome Res; 2020 Feb; 30(2):214-226. PubMed ID: 31992613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.