These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38940174)

  • 21. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scGen predicts single-cell perturbation responses.
    Lotfollahi M; Wolf FA; Theis FJ
    Nat Methods; 2019 Aug; 16(8):715-721. PubMed ID: 31363220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iLSGRN: inference of large-scale gene regulatory networks based on multi-model fusion.
    Wu Y; Qian B; Wang A; Dong H; Zhu E; Ma B
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37851379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting which genes will respond to transcription factor perturbations.
    Kang Y; Jung WJ; Brent MR
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35666184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning single-cell perturbation responses using neural optimal transport.
    Bunne C; Stark SG; Gut G; Del Castillo JS; Levesque M; Lehmann KV; Pelkmans L; Krause A; Rätsch G
    Nat Methods; 2023 Nov; 20(11):1759-1768. PubMed ID: 37770709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection.
    Noh H; Shoemaker JE; Gunawan R
    Nucleic Acids Res; 2018 Apr; 46(6):e34. PubMed ID: 29325153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational and experimental approaches for modeling gene regulatory networks.
    Goutsias J; Lee NH
    Curr Pharm Des; 2007; 13(14):1415-36. PubMed ID: 17504165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks.
    Deng C; Li HD; Zhang LS; Liu Y; Li Y; Wang J
    Bioinformatics; 2024 Jun; 40(Suppl 1):i511-i520. PubMed ID: 38940121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DCGAN-DTA: Predicting drug-target binding affinity with deep convolutional generative adversarial networks.
    Kalemati M; Zamani Emani M; Koohi S
    BMC Genomics; 2024 May; 25(1):411. PubMed ID: 38724911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images.
    Huang Y; Yu G; Yang Y
    PLoS Comput Biol; 2023 Nov; 19(11):e1011623. PubMed ID: 37939200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GeNGe: systematic generation of gene regulatory networks.
    Hache H; Wierling C; Lehrach H; Herwig R
    Bioinformatics; 2009 May; 25(9):1205-7. PubMed ID: 19251773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
    Chen X; Lin J; Wang Y; Zhang W; Xie W; Zheng Z; Wong KC
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38837395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential dependency network analysis to identify condition-specific topological changes in biological networks.
    Zhang B; Li H; Riggins RB; Zhan M; Xuan J; Zhang Z; Hoffman EP; Clarke R; Wang Y
    Bioinformatics; 2009 Feb; 25(4):526-32. PubMed ID: 19112081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network.
    Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations.
    Ling MH; Poh CL
    BMC Bioinformatics; 2014 May; 15():140. PubMed ID: 24884349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general computational method for robustness analysis with applications to synthetic gene networks.
    Rizk A; Batt G; Fages F; Soliman S
    Bioinformatics; 2009 Jun; 25(12):i169-78. PubMed ID: 19477984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.
    Deng Y; Zenil H; Tegnér J; Kiani NA
    Bioinformatics; 2017 Dec; 33(24):3964-3972. PubMed ID: 28961895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.