BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38940179)

  • 1. Enhancing generalizability and performance in drug-target interaction identification by integrating pharmacophore and pre-trained models.
    Zhang Z; He X; Long D; Luo G; Chen S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i539-i547. PubMed ID: 38940179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction.
    Qiu X; Wang H; Tan X; Fang Z
    Comput Biol Med; 2024 May; 173():108376. PubMed ID: 38552281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target affinity prediction method based on multi-scale information interaction and graph optimization.
    Zhu Z; Yao Z; Zheng X; Qi G; Li Y; Mazur N; Gao X; Gong Y; Cong B
    Comput Biol Med; 2023 Dec; 167():107621. PubMed ID: 37907030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMGNN: A Method to Predict Compound-Protein Interaction With Pharmacophore Features and Physicochemical Properties of Amino Acids.
    Tang C; Zhong C; Wang M; Zhou F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1030-1040. PubMed ID: 35503835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores.
    Zhang L; Wang CC; Zhang Y; Chen X
    Comput Biol Med; 2023 Nov; 166():107512. PubMed ID: 37788507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism.
    Wu H; Liu J; Jiang T; Zou Q; Qi S; Cui Z; Tiwari P; Ding Y
    Neural Netw; 2024 Jan; 169():623-636. PubMed ID: 37976593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction.
    Wang S; Song X; Zhang Y; Zhang K; Liu Y; Ren C; Pang S
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning method for drug-target affinity prediction based on sequence interaction information mining.
    Jiang M; Shao Y; Zhang Y; Zhou W; Pang S
    PeerJ; 2023; 11():e16625. PubMed ID: 38099302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank.
    Ru X; Ye X; Sakurai T; Zou Q
    Bioinformatics; 2022 Mar; 38(7):1964-1971. PubMed ID: 35134828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction.
    Fang K; Zhang Y; Du S; He J
    Comput Biol Med; 2023 Sep; 164():107372. PubMed ID: 37597410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction.
    Zhu Y; Zhao L; Wen N; Wang J; Wang C
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37688568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models.
    Sun Y; Li YY; Leung CK; Hu P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MUFFIN: multi-scale feature fusion for drug-drug interaction prediction.
    Chen Y; Ma T; Yang X; Wang J; Song B; Zeng X
    Bioinformatics; 2021 Sep; 37(17):2651-2658. PubMed ID: 33720331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GEFA: Early Fusion Approach in Drug-Target Affinity Prediction.
    Nguyen TM; Nguyen T; Le TM; Tran T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):718-728. PubMed ID: 34197324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach.
    Kalemati M; Zamani Emani M; Koohi S
    PLoS Comput Biol; 2023 Mar; 19(3):e1011036. PubMed ID: 37000857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDL-CPI: Multi-view deep learning model for compound-protein interaction prediction.
    Wei L; Long W; Wei L
    Methods; 2022 Aug; 204():418-427. PubMed ID: 35114401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.