BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38940183)

  • 1. Floria: fast and accurate strain haplotyping in metagenomes.
    Shaw J; Gounot JS; Chen H; Nagarajan N; Yu YW
    Bioinformatics; 2024 Jun; 40(Supplement_1):i30-i38. PubMed ID: 38940183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strainberry: automated strain separation in low-complexity metagenomes using long reads.
    Vicedomini R; Quince C; Darling AE; Chikhi R
    Nat Commun; 2021 Jul; 12(1):4485. PubMed ID: 34301928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes.
    Bertrand D; Shaw J; Kalathiyappan M; Ng AHQ; Kumar MS; Li C; Dvornicic M; Soldo JP; Koh JY; Tong C; Ng OT; Barkham T; Young B; Marimuthu K; Chng KR; Sikic M; Nagarajan N
    Nat Biotechnol; 2019 Aug; 37(8):937-944. PubMed ID: 31359005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing.
    Chen Z; Grim CJ; Ramachandran P; Meng J
    Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking short-, long- and hybrid-read assemblers for metagenome sequencing of complex microbial communities.
    Goussarov G; Mysara M; Cleenwerck I; Claesen J; Leys N; Vandamme P; Van Houdt R
    Microbiology (Reading); 2024 Jun; 170(6):. PubMed ID: 38916949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive investigation of metagenome assembly by linked-read sequencing.
    Zhang L; Fang X; Liao H; Zhang Z; Zhou X; Han L; Chen Y; Qiu Q; Li SC
    Microbiome; 2020 Nov; 8(1):156. PubMed ID: 33176883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating
    Vosloo S; Huo L; Anderson CL; Dai Z; Sevillano M; Pinto A
    Microbiol Spectr; 2021 Dec; 9(3):e0143421. PubMed ID: 34730411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking genome assembly methods on metagenomic sequencing data.
    Zhang Z; Yang C; Veldsman WP; Fang X; Zhang L
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36917471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OGRE: Overlap Graph-based metagenomic Read clustEring.
    Balvert M; Luo X; Hauptfeld E; Schönhuth A; Dutilh BE
    Bioinformatics; 2021 May; 37(7):905-912. PubMed ID: 32871010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and application of pseudo-long reads for metagenome assembly.
    Sim M; Lee J; Wy S; Park N; Lee D; Kwon D; Kim J
    Gigascience; 2022 May; 11():. PubMed ID: 35579554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.
    Wang Z; Wang Y; Fuhrman JA; Sun F; Zhu S
    Brief Bioinform; 2020 May; 21(3):777-790. PubMed ID: 30860572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LEMMI: a continuous benchmarking platform for metagenomics classifiers.
    Seppey M; Manni M; Zdobnov EM
    Genome Res; 2020 Aug; 30(8):1208-1216. PubMed ID: 32616517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly methods for nanopore-based metagenomic sequencing: a comparative study.
    Latorre-Pérez A; Villalba-Bermell P; Pascual J; Vilanova C
    Sci Rep; 2020 Aug; 10(1):13588. PubMed ID: 32788623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetaShot: an accurate workflow for taxon classification of host-associated microbiome from shotgun metagenomic data.
    Fosso B; Santamaria M; D'Antonio M; Lovero D; Corrado G; Vizza E; Passaro N; Garbuglia AR; Capobianchi MR; Crescenzi M; Valiente G; Pesole G
    Bioinformatics; 2017 Jun; 33(11):1730-1732. PubMed ID: 28130230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes.
    Patin NV; Goodwin KD
    mSystems; 2022 Dec; 7(6):e0059522. PubMed ID: 36448813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAMISIM: simulating metagenomes and microbial communities.
    Fritz A; Hofmann P; Majda S; Dahms E; Dröge J; Fiedler J; Lesker TR; Belmann P; DeMaere MZ; Darling AE; Sczyrba A; Bremges A; McHardy AC
    Microbiome; 2019 Feb; 7(1):17. PubMed ID: 30736849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.