These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38940335)

  • 1. Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic.
    Li G; Meng J; Yu S; Bai X; Dai J; Song Y; Peng X; Zhao Q
    J Phys Chem B; 2024 Aug; 128(32):7712-7721. PubMed ID: 38940335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited-state dynamics of all-trans protonated retinal Schiff base in CRABPII-based rhodopsin mimics.
    Li G; Hu Y; Pei S; Meng J; Wang J; Wang J; Yue S; Wang Z; Wang S; Liu X; Weng Y; Peng X; Zhao Q
    Biophys J; 2022 Nov; 121(21):4109-4118. PubMed ID: 36181266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoisomerization pathway of the microbial rhodopsin chromophore in solution.
    Sugiura M; Kandori H
    Photochem Photobiol Sci; 2024 Aug; 23(8):1435-1443. PubMed ID: 38886314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward an understanding of the retinal chromophore in rhodopsin mimics.
    Huntress MM; Gozem S; Malley KR; Jailaubekov AE; Vasileiou C; Vengris M; Geiger JH; Borhan B; Schapiro I; Larsen DS; Olivucci M
    J Phys Chem B; 2013 Sep; 117(35):10053-70. PubMed ID: 23971945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin.
    Manathunga M; Jenkins AJ; Orozco-Gonzalez Y; Ghanbarpour A; Borhan B; Geiger JH; Larsen DS; Olivucci M
    J Phys Chem Lett; 2020 Jun; 11(11):4245-4252. PubMed ID: 32374610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Photochemistry Observed in a New Microbial Rhodopsin.
    Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H
    J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAT Rhodopsin Is an Ultraviolet-Dependent Environmental pH Sensor.
    Kataoka C; Sugimoto T; Shigemura S; Katayama K; Tsunoda SP; Inoue K; Béjà O; Kandori H
    Biochemistry; 2021 Mar; 60(12):899-907. PubMed ID: 33721993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoisomerization in rhodopsin.
    Kandori H; Shichida Y; Yoshizawa T
    Biochemistry (Mosc); 2001 Nov; 66(11):1197-209. PubMed ID: 11743865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin.
    Hontani Y; Broser M; Luck M; Weißenborn J; Kloz M; Hegemann P; Kennis JTM
    J Am Chem Soc; 2020 Jul; 142(26):11464-11473. PubMed ID: 32475117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurational Changes of Retinal Schiff Base during Membrane Na
    Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M
    J Phys Chem Lett; 2024 Feb; 15(7):1993-1998. PubMed ID: 38349321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular bases for the selection of the chromophore of animal rhodopsins.
    Luk HL; Melaccio F; Rinaldi S; Gozem S; Olivucci M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15297-302. PubMed ID: 26607446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
    Manathunga M; Yang X; Orozco-Gonzalez Y; Olivucci M
    J Phys Chem Lett; 2017 Oct; 8(20):5222-5227. PubMed ID: 28981285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemistry of the Retinal Chromophore in Microbial Rhodopsins.
    Inoue K
    J Phys Chem B; 2023 Nov; 127(43):9215-9222. PubMed ID: 37853716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Phys Chem Chem Phys; 2019 Nov; 21(46):25728-25734. PubMed ID: 31720623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of isomerization of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picosecond laser pulse.
    Kandori H; Matuoka S; Shichida Y; Yoshizawa T; Ito M; Tsukida K; Balogh-Nair V; Nakanishi K
    Biochemistry; 1989 Jul; 28(15):6460-7. PubMed ID: 2790007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism for thermal denaturation of thermophilic rhodopsin.
    Misra R; Hirshfeld A; Sheves M
    Chem Sci; 2019 Aug; 10(31):7365-7374. PubMed ID: 31489158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin.
    Wijesiri K; Gascón JA
    J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.