These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38940818)
1. Turgor loss point explains climate-driven growth reductions in trees in Central Europe. Kunert N; Münchinger IK; Hajek P Plant Biol (Stuttg); 2024 Jun; ():. PubMed ID: 38940818 [TBL] [Abstract][Full Text] [Related]
2. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. McGregor IR; Helcoski R; Kunert N; Tepley AJ; Gonzalez-Akre EB; Herrmann V; Zailaa J; Stovall AEL; Bourg NA; McShea WJ; Pederson N; Sack L; Anderson-Teixeira KJ New Phytol; 2021 Jul; 231(2):601-616. PubMed ID: 33049084 [TBL] [Abstract][Full Text] [Related]
3. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Álvarez-Cansino L; Comita LS; Jones FA; Manzané-Pinzón E; Browne L; Engelbrecht BMJ Ecology; 2022 Jun; 103(6):e3700. PubMed ID: 35352828 [TBL] [Abstract][Full Text] [Related]
4. Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests? Song HQ; Wang YQ; Yan CL; Zeng WH; Chen YJ; Zhang JL; Liu H; Zhang QM; Zhu SD Tree Physiol; 2023 Aug; 43(8):1319-1325. PubMed ID: 37154549 [TBL] [Abstract][Full Text] [Related]
5. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. Kunert N; Zailaa J; Herrmann V; Muller-Landau HC; Wright SJ; Pérez R; McMahon SM; Condit RC; Hubbell SP; Sack L; Davies SJ; Anderson-Teixeira KJ New Phytol; 2021 Apr; 230(2):485-496. PubMed ID: 33449384 [TBL] [Abstract][Full Text] [Related]
6. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Maréchaux I; Bartlett MK; Iribar A; Sack L; Chave J Biol Lett; 2017 Jan; 13(1):. PubMed ID: 28077687 [TBL] [Abstract][Full Text] [Related]
7. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Bartlett MK; Zhang Y; Kreidler N; Sun S; Ardy R; Cao K; Sack L Ecol Lett; 2014 Dec; 17(12):1580-90. PubMed ID: 25327976 [TBL] [Abstract][Full Text] [Related]
8. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Zhu SD; Chen YJ; Ye Q; He PC; Liu H; Li RH; Fu PL; Jiang GF; Cao KF Tree Physiol; 2018 May; 38(5):658-663. PubMed ID: 29474684 [TBL] [Abstract][Full Text] [Related]
9. Extending the osmometer method for assessing drought tolerance in herbaceous species. Griffin-Nolan RJ; Ocheltree TW; Mueller KE; Blumenthal DM; Kray JA; Knapp AK Oecologia; 2019 Feb; 189(2):353-363. PubMed ID: 30627784 [TBL] [Abstract][Full Text] [Related]
10. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Powell TL; Wheeler JK; de Oliveira AAR; da Costa ACL; Saleska SR; Meir P; Moorcroft PR Glob Chang Biol; 2017 Oct; 23(10):4280-4293. PubMed ID: 28426175 [TBL] [Abstract][Full Text] [Related]
11. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest. Inoue Y; Ichie T; Kenzo T; Yoneyama A; Kumagai T; Nakashizuka T Tree Physiol; 2017 Oct; 37(10):1301-1311. PubMed ID: 28541561 [TBL] [Abstract][Full Text] [Related]
12. [Drought tolerance traits of leaves of 20 tree species in temperate forest of Northeast China]. Wang LL; Zhou ZH; Jin Y; Wang CK Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):1-8. PubMed ID: 35224919 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Ramírez-Valiente JA; Cavender-Bares J Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347 [TBL] [Abstract][Full Text] [Related]
14. Low forest productivity associated with increasing drought-tolerant species is compensated by an increase in drought-tolerance richness. García-Valdés R; Vayreda J; Retana J; Martínez-Vilalta J Glob Chang Biol; 2021 May; 27(10):2113-2127. PubMed ID: 33511746 [TBL] [Abstract][Full Text] [Related]
15. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. Eller CB; Lima AL; Oliveira RS New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126 [TBL] [Abstract][Full Text] [Related]
16. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Fletcher LR; Cui H; Callahan H; Scoffoni C; John GP; Bartlett MK; Burge DO; Sack L Am J Bot; 2018 Oct; 105(10):1672-1687. PubMed ID: 30368798 [TBL] [Abstract][Full Text] [Related]
17. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Zang C; Hartl-Meier C; Dittmar C; Rothe A; Menzel A Glob Chang Biol; 2014 Dec; 20(12):3767-79. PubMed ID: 24838398 [TBL] [Abstract][Full Text] [Related]
18. Relating the climate envelopes of urban tree species to their drought and thermal tolerance. Hanley PA; Arndt SK; Livesley SJ; Szota C Sci Total Environ; 2021 Jan; 753():142012. PubMed ID: 33207433 [TBL] [Abstract][Full Text] [Related]
19. Crown dieback and mortality of urban trees linked to heatwaves during extreme drought. Marchin RM; Esperon-Rodriguez M; Tjoelker MG; Ellsworth DS Sci Total Environ; 2022 Dec; 850():157915. PubMed ID: 35944640 [TBL] [Abstract][Full Text] [Related]
20. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. Meng YY; Xiang W; Wen Y; Huang DL; Cao KF; Zhu SD Ann Bot; 2022 Sep; 130(3):345-354. PubMed ID: 34871356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]