These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38940906)
1. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906 [TBL] [Abstract][Full Text] [Related]
2. Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Zhang W; Ge BB; Lv ZY; Park KS; Shi LM; Zhang KC Microorganisms; 2023 May; 11(5):. PubMed ID: 37317199 [No Abstract] [Full Text] [Related]
3. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
4. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
5. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
6. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Yan L; Yang Q; Sundin GW; Li H; Ma Z Fungal Genet Biol; 2010 Sep; 47(9):753-60. PubMed ID: 20595070 [TBL] [Abstract][Full Text] [Related]
7. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. Shao W; Yang Y; Zhang Y; Lv C; Ren W; Chen C Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995 [TBL] [Abstract][Full Text] [Related]
8. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
9. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Yang Q; Chen Y; Ma Z Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398 [TBL] [Abstract][Full Text] [Related]
10. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
11. iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin. Shi L; Ge B; Wang J; Liu B; Ma J; Wei Q; Zhang K BMC Microbiol; 2019 Dec; 19(1):280. PubMed ID: 31829181 [TBL] [Abstract][Full Text] [Related]
12. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
13. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
14. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
15. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin. Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179 [TBL] [Abstract][Full Text] [Related]
16. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. Silva-Moreno E; Brito-Echeverría J; López M; Ríos J; Balic I; Campos-Vargas R; Polanco R World J Microbiol Biotechnol; 2016 May; 32(5):74. PubMed ID: 27038944 [TBL] [Abstract][Full Text] [Related]
17. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
18. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea. Zhang Y; Wang C; Su P; Liao X PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973 [TBL] [Abstract][Full Text] [Related]
19. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
20. A Botrytis cinerea KLP-7 Kinesin acts as a Virulence Determinant during Plant Infection. Tayal P; Raj S; Sharma E; Kumar M; Dayaman V; Verma N; Jogawat A; Dua M; Kapoor R; Johri AK Sci Rep; 2017 Sep; 7(1):10664. PubMed ID: 28878341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]