These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38941057)

  • 1. Prediction of Bone Remodeling in Rat Caudal Vertebrae Based on Fluid-Solid Coupling Simulation.
    Zhao S; Gao Y; Leng H; Sun L; Huo B
    Ann Biomed Eng; 2024 Jun; ():. PubMed ID: 38941057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-solid coupling numerical simulation of entire rat caudal vertebrae under dynamic loading.
    Zhao S; Gao Y; Yang A; Gao X; Leng H; Sun L; Huo B
    Comput Methods Biomech Biomed Engin; 2024 Jan; ():1-10. PubMed ID: 38231258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of fluid flow in trabecular-lacunar cavities under cyclic loading.
    Zhao S; Chen Z; Li T; Sun Q; Leng H; Huo B
    Comput Biol Med; 2023 Sep; 163():107144. PubMed ID: 37315384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions.
    Li T; Chen Z; Gao Y; Zhu L; Yang R; Leng H; Huo B
    J Biomech; 2020 Aug; 109():109912. PubMed ID: 32807313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-solid coupling numerical simulation of the effects of different doses of verapamil on cancellous bone in type 2 diabetic rats.
    Wu X; Gong H; Hu X
    BMC Musculoskelet Disord; 2024 Feb; 25(1):123. PubMed ID: 38336651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fluid-solid coupling numerical simulation on ideal porous structure of rat alveolar bone].
    Luo R; Zhao Z; Leng H; Huo B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):87-95. PubMed ID: 32096381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-Solid Coupling Simulation of Wall Fluid Shear Stress on Cells under Gradient Fluid Flow.
    Zhang X; Gao Y; Huo B
    Appl Bionics Biomech; 2021; 2021():8340201. PubMed ID: 34899981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial relationships between bone formation and mechanical stress within cancellous bone.
    Cresswell EN; Goff MG; Nguyen TM; Lee WX; Hernandez CJ
    J Biomech; 2016 Jan; 49(2):222-8. PubMed ID: 26706721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration and differentiation of osteoclast precursors under gradient fluid shear stress.
    Gao Y; Li T; Sun Q; Ye C; Guo M; Chen Z; Chen J; Huo B
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1731-1744. PubMed ID: 31115727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.
    Kameo Y; Adachi T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):851-60. PubMed ID: 24174063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local
    Scheuren AC; Vallaster P; Kuhn GA; Paul GR; Malhotra A; Kameo Y; Müller R
    Front Bioeng Biotechnol; 2020; 8():566346. PubMed ID: 33154964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically induced bone formation is not sensitive to local osteocyte density in rat vertebral cancellous bone.
    Cresswell EN; Nguyen TM; Horsfield MW; Alepuz AJ; Metzger TA; Niebur GL; Hernandez CJ
    J Orthop Res; 2018 Feb; 36(2):672-681. PubMed ID: 28513889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of bone formation in rat tail vertebrae by mechanical loading.
    Chambers TJ; Evans M; Gardner TN; Turner-Smith A; Chow JW
    Bone Miner; 1993 Feb; 20(2):167-78. PubMed ID: 8453332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae.
    Chow JW; Jagger CJ; Chambers TJ
    Am J Physiol; 1993 Aug; 265(2 Pt 1):E340-7. PubMed ID: 8368304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of bone formation by dynamic mechanical loading of rat caudal vertebrae is not suppressed by 3-amino-1-hydroxypropylidene-1-bisphosphonate (AHPrBP).
    Jagger CJ; Chambers TJ; Chow JW
    Bone; 1995 Mar; 16(3):309-13. PubMed ID: 7786634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.