These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Neural Network Potentials: A Concise Overview of Methods. Kocer E; Ko TW; Behler J Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580 [TBL] [Abstract][Full Text] [Related]
4. A machine learning potential construction based on radial distribution function sampling. Watanabe N; Hori Y; Sugisawa H; Ida T; Shoji M; Shigeta Y J Comput Chem; 2024 Dec; 45(32):2949-2958. PubMed ID: 39225311 [TBL] [Abstract][Full Text] [Related]
5. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations. Willow SY; Kim DG; Sundheep R; Hajibabaei A; Kim KS; Myung CW Phys Chem Chem Phys; 2024 Aug; 26(33):22073-22082. PubMed ID: 39113586 [TBL] [Abstract][Full Text] [Related]
6. Training machine learning potentials for reactive systems: A Colab tutorial on basic models. Pan X; Snyder R; Wang JN; Lander C; Wickizer C; Van R; Chesney A; Xue Y; Mao Y; Mei Y; Pu J; Shao Y J Comput Chem; 2024 Apr; 45(10):638-647. PubMed ID: 38082539 [TBL] [Abstract][Full Text] [Related]
7. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials. Chen MS; Morawietz T; Mori H; Markland TE; Artrith N J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919 [TBL] [Abstract][Full Text] [Related]
8. Reaction dynamics of Diels-Alder reactions from machine learned potentials. Young TA; Johnston-Wood T; Zhang H; Duarte F Phys Chem Chem Phys; 2022 Sep; 24(35):20820-20827. PubMed ID: 36004770 [TBL] [Abstract][Full Text] [Related]
9. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Li J; Lopez SA Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602 [TBL] [Abstract][Full Text] [Related]
10. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration. Kang PL; Shang C; Liu ZP Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999 [TBL] [Abstract][Full Text] [Related]
11. Lifelong Machine Learning Potentials. Eckhoff M; Reiher M J Chem Theory Comput; 2023 Jun; 19(12):3509-3525. PubMed ID: 37288932 [TBL] [Abstract][Full Text] [Related]
12. Accelerating Metadynamics-Based Free-Energy Calculations with Adaptive Machine Learning Potentials. Xu J; Cao XM; Hu P J Chem Theory Comput; 2021 Jul; 17(7):4465-4476. PubMed ID: 34100605 [TBL] [Abstract][Full Text] [Related]
13. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178 [TBL] [Abstract][Full Text] [Related]
14. How to train a neural network potential. Tokita AM; Behler J J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396 [TBL] [Abstract][Full Text] [Related]
15. Comparing machine learning potentials for water: Kernel-based regression and Behler-Parrinello neural networks. Montero de Hijes P; Dellago C; Jinnouchi R; Schmiedmayer B; Kresse G J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506284 [TBL] [Abstract][Full Text] [Related]
16. Screening Cu-Zeolites for Methane Activation Using Curriculum-Based Training. Guo J; Sours T; Holton S; Sun C; Kulkarni AR ACS Catal; 2024 Feb; 14(3):1232-1242. PubMed ID: 38327646 [TBL] [Abstract][Full Text] [Related]
17. How machine learning can accelerate electrocatalysis discovery and optimization. Steinmann SN; Wang Q; Seh ZW Mater Horiz; 2023 Feb; 10(2):393-406. PubMed ID: 36541226 [TBL] [Abstract][Full Text] [Related]
18. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations. Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500 [TBL] [Abstract][Full Text] [Related]
19. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials. Williams CD; Kalayan J; Burton NA; Bryce RA Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799 [TBL] [Abstract][Full Text] [Related]
20. Architectures and accuracy of artificial neural network for disease classification from omics data. Yu H; Samuels DC; Zhao YY; Guo Y BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]